Self-interaction corrected density functional theory was used to determine the self-interaction error for dissociating one-electron bonds. The self-interaction error of the unpaired electron mimics nondynamic correlation effects that have no physical basis where these effects increase for increasing separation distance. For short distances the magnitude of the self-interaction error takes a minimum and increases then again for decreasing R. The position of the minimum of the magnitude of the self-interaction error influences the equilibrium properties of the one-electron bond in the radical cations H2+ (1),B2H4+ (2), and C2H6+ (3), which differ significantly. These differences are explained by hyperconjugative interactions in 2 and 3 that are directly reflected by the self-interaction error and its orbital contributions. The density functional theory description of the dissociating radical cations suffers not only from the self-interaction error but also from the simplified description of interelectronic exchange. The calculated differences between ionic and covalent dissociation for 1, 2, and 3 provide an excellent criterion for determining the basic failures of density functional theory, self-interaction corrected density functional theory, and other methods. Pure electronic, orbital relaxation, and geometric relaxation contributions to the self-interaction error are discussed. The relevance of these effects for the description of transition states and charge transfer complexes is shown. Suggestions for the construction of new exchange-correlation functionals are given. In this connection, the disadvantages of recently suggested self-interaction error-free density functional theory methods are emphasized.

1.
D.
Cremer
,
Mol. Phys.
99
,
1899
(
2001
).
2.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
,
Mol. Phys.
100
,
1771
(
2002
).
3.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
,
Theor. Chem. Acc.
107
,
291
(
2002
).
4.
V.
Polo
,
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Chem. Phys. Lett.
352
,
469
(
2002
).
5.
V.
Polo
,
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Theor. Chem. Acc.
107
,
291
(
2002
).
6.
D.
Cremer
,
M.
Filatov
,
V.
Polo
,
E.
Kraka
, and
S.
Shaik
,
Int. J. Mol. Sci.
3
,
604
(
2002
).
7.
M.
Filatov
and
D.
Cremer
,
J. Chem. Phys.
5
,
2320
(
2003
).
8.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
9.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
10.
(a) J. P. Perdew, Local Density Approximations in Quantum Chemistry and Solid State Physics, edited by J. Avery and J. P. Dahl (Plenum, New York, 1984); (b) J. P. Perdew and M. Ernzerhof, Electronic Density Functional Theory: Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York, 1998), p. 31.
11.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
12.
L.
Noodleman
,
D.
Post
, and
E. J.
Baerends
,
Chem. Phys.
64
,
159
(
1982
).
13.
(a)
J. G.
Harrison
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Phys. B
16
,
2079
(
1983
);
(b)
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Chem. Phys.
80
,
1972
(
1984
);
(c)
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Chem. Phys.
82
,
2688
(
1985
).
14.
(a)
J. B.
Krieger
and
Y.
Li
,
Phys. Rev. A
39
,
6052
(
1989
);
(b)
Y.
Li
and
J. B.
Krieger
,
Phys. Rev. A
41
,
1701
(
1990
);
(c)
J.
Chen
,
J. B.
Krieger
, and
Y.
Li
,
Phys. Rev. A
54
,
3939
(
1996
).
15.
(a)
Y.
Guo
and
M. A.
Whitehead
,
J. Comput. Chem.
12
,
803
(
1991
);
(b) M. A. Whitehead and S. Suba, Recent Advances in Computational Chemistry, edited by D. P. Chong (World Scientific, Singapore, 1995), Vol. 1, Part I, p. 53.
16.
P. M. W.
Gill
,
B. G.
Johnson
,
C. A.
Gonzales
, and
J. A.
Pople
,
Chem. Phys. Lett.
221
,
100
(
1994
).
17.
S.
Goedecker
and
C. J.
Umrigar
,
Phys. Rev. A
55
,
1765
(
1977
).
18.
M. A.
Buijse
and
E. J.
Baerends
,
Theor. Chim. Acta
79
,
389
(
1991
);
M. A.
Buijse
and
E. J.
Baerends
,
J. Chem. Phys.
93
,
4129
(
1990
).
19.
(a)
X. M.
Tong
and
S. I.
Chu
,
Phys. Rev. A
55
,
3406
(
1997
);
(b)
X. M.
Tong
and
S. I.
Chu
,
Phys. Rev. A
57
,
855
(
1998
);
(c)
T. F.
Jiang
,
X. M.
Tong
, and
S. I.
Chu
,
Phys. Rev. B
63
,
45317
(
2001
).
20.
(a)
R. K.
Nesbet
,
Phys. Rev. A
56
,
2665
(
1997
);
(b)
R. K.
Nesbet
,
Int. J. Quantum Chem.
85
,
405
(
2001
).
21.
(a)
G. I.
Csonka
,
N. A.
Nguyen
, and
I.
Kolossvary
,
J. Comput. Chem.
18
,
1534
(
1997
);
(b)
G. I.
Csonka
and
B. G.
Johnson
,
Theor. Chem. Acc.
99
,
158
(
1998
).
22.
K.
Burke
,
J. P.
Perdew
, and
M.
Ernzerhof
,
J. Chem. Phys.
109
,
3760
(
1998
).
23.
O. V.
Gritsenko
,
B.
Ensing
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Phys. Chem. A
104
,
8558
(
2000
).
24.
(a)
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
,
J. Chem. Phys.
112
,
7880
(
2000
);
(b)
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
,
J. Chem. Phys.
113
,
6029
(
2000
);
(c)
J.
Garza
,
R.
Vargas
,
J. A.
Nichols
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
639
(
2001
).
25.
F. D.
Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
26.
(a)
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
,
J. Chem. Phys.
115
,
26
(
2001
);
(b)
S.
Patchkovskii
and
T.
Ziegler
,
J. Chem. Phys.
116
,
7806
(
2002
);
(c)
S.
Patchkovskii
and
T.
Ziegler
,
J. Phys. Chem. A
106
,
1088
(
2002
).
27.
S.
Kümmel
and
J. P.
Perdew
,
Mol. Phys.
101
,
1363
(
2003
).
28.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
29.
E.
Fermi
and
E.
Amaldi
,
Accad. Ital. Rome
6
,
119
(
1934
).
30.
J. C. Slater, Quantum Theory of Molecules and Solids (The Self-Consistent Field for Molecules and Solids) (McGraw–Hill, New York, 1974), Vol. 4.
31.
R.
Merkle
,
A.
Savin
, and
H.
Preuss
,
J. Chem. Phys.
97
,
9216
(
1992
).
32.
E.
Ruiz
,
D. R.
Salahub
, and
A.
Vela
,
J. Chem. Phys.
100
,
12265
(
1996
).
33.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
34.
(a)
B.
Braïda
and
P. C.
Hiberty
,
J. Phys. Chem. A
102
,
7872
(
1998
);
(b)
B.
Braïda
,
D.
Lauvergnat
, and
P. C.
Hiberty
,
J. Chem. Phys.
115
,
90
(
2001
).
35.
(a)
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
);
(b)
Y.
Zhang
and
W.
Yang
,
Theor. Chem. Acc.
103
,
346
(
2001
).
36.
M.
Sodupe
,
J.
Bertran
,
L.
Rodrı́guez-Santiago
, and
E. J.
Baerends
,
J. Phys. Chem.
103
,
166
(
1999
).
37.
Y.
Xie
,
H. F.
Schaefer
III
,
X. Y.
Fu
, and
R. Z.
Liu
,
J. Chem. Phys.
111
,
2532
(
1999
).
38.
H.
Chermette
,
I.
Ciofini
,
F.
Mariotti
, and
C.
Daul
,
J. Chem. Phys.
114
,
1447
(
2001
).
39.
M.
Grüning
,
O. V.
Gritsenko
,
S. J. A.
van Gisbergen
, and
E. J.
Baerends
,
J. Phys. Chem.
105
,
9211
(
2001
).
40.
J.
Jaramillo
and
G. E.
Scuseria
,
J. Chem. Phys.
118
,
1068
(
2003
).
41.
E. Kraka, J. Gräfenstein, M. Filatov, J. Gauss, A. Wu, V. Polo, Y. He, F. Reichel, L. Olsson, Z. Konkoli, Z. He, and D. Cremer, COLOGNE 2003 (Göteborg University, Göteborg, 2003).
42.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
43.
R.
Seeger
and
J. A.
Pople
,
J. Chem. Phys.
65
,
265
(
1976
).
44.
M. R.
Hestenes
and
E.
Stiefel
,
J. Res. Natl. Bur. Stand.
49
,
409
(
1952
).
45.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
46.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
47.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
48.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
49.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
50.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
51.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
52.
(a)
Z.
Konkoli
and
D.
Cremer
,
Int. J. Quantum Chem.
67
,
1
(
1998
);
(b)
Z.
Konkoli
and
D.
Cremer
,
Int. J. Quantum Chem.
67
,
29
(
1998
);
(c) D. Cremer, J. A. Larsson, and E. Kraka, in Theoretical and Computational Chemistry, edited by C. Párkányi (Elsevier, Amsterdam, 1998), Vol. 5, p. 259.
53.
J. C.
Slater
,
Phys. Rev.
81
,
385
(
1951
).
54.
R.
Seeger
and
J. A.
Pople
,
J. Chem. Phys.
66
,
3045
(
1977
).
55.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys.
104
,
9047
(
1996
).
56.
J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, ACES II, Quantum Theory Project, University of Florida, 1992;
see also,
J. F.
Stanton
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
).
57.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.9 (Gaussian, Inc., Pittsburgh, Pennsylvania, 1998).
58.
See, e.g., T. A. Albright, J. K. Burdett, and M. H. Whangbo, Orbital interactions in Chemistry (Wiley–Interscience, New York, 1985).
59.
R.
Krishnan
,
M.
Frisch
, and
J. A.
Pople
,
Chem. Phys.
72
,
4244
(
1980
).
60.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
For a recent review, see D. Cremer, in Encyclopedia of Computational Chemistry, edited by P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998), Vol. 3, p. 1706.
61.
J. A.
Pople
,
J. S.
Binkley
, and
R.
Seeger
,
Int. J. Quantum Chem., Symp.
10
,
1
(
1976
).
62.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
63.
J. P. Perdew and K. Schmidt, Density Functional Theory and its Application to Materials, edited by V. E. Van Doren, K. Van Alsenoy, and P. Geelings (American Institute of Physics, New York, 2001).
This content is only available via PDF.
You do not currently have access to this content.