A system of soft ellipsoid molecules confined between two planar walls is studied using classical density-functional theory. Both the isotropic and nematic phases are considered. The excess free energy is evaluated using two different Ansätze and the intermolecular interaction is incorporated using two different direct correlation functions (DCF’s). The first is a numerical DCF obtained from simulations of bulk soft ellipsoid fluids and the second is taken from the Parsons–Lee theory. In both the isotropic and nematic phases the numerical DCF gives density and order parameter profiles in reasonable agreement with simulation. The Parsons–Lee DCF also gives reasonable agreement in the isotropic phase but poor agreement in the nematic phase.

1.
B.
Jerome
,
Rep. Prog. Phys.
54
,
391
(
1992
).
2.
J.
Frommer
,
Angew. Chem., Int. Ed. Engl.
31
,
1298
(
1992
).
3.
R. L.
Wlliamson
,
M.
Rivera
,
M. J.
Miles
, and
K. D.
Jandt
,
Proc. SPIE
2384
,
60
(
1995
).
4.
G. R. Luckhurst, P. J. Le Masurier, T. Miyamoto, K. Nakamura, T. H. Payne, A. Sugimara, and B. A. Timini, in Proceedings of the 4th International Display Work-shop, 1997.
5.
P. Pasini, C. Chiccoli, and C. Zannoni, in Advances in the Computer Simulations of Liquid Crystals, edited by P. Pasini and C. Zannoni (Kluwer, Dordrecht, 2000).
6.
M. P.
Allen
,
Mol. Phys.
96
,
1391
(
1999
).
7.
D.
Andrienko
and
M. P.
Allen
,
Phys. Rev. E
65
,
021704
(
2002
).
8.
G. D.
Wall
and
D. J.
Cleaver
,
Phys. Rev. E
56
,
4306
(
1997
).
9.
D. J.
Cleaver
and
D. J.
Tildesley
,
Mol. Phys.
81
,
781
(
1994
).
10.
P. G. de Gennes and J. P. Prost, Physics of Liquid Crystals, 2nd edition, (Clarendon, Oxford, 1995).
11.
A. M.
Somoza
,
L.
Mederos
, and
D. E.
Sullivan
,
Phys. Rev. E
52
,
5017
(
1995
).
12.
P. I. C.
Teixeira
,
Phys. Rev. E
55
,
2876
(
1997
).
13.
A.
Chrzanowska
,
P. I. C.
Teixeira
,
H.
Ehrentraut
, and
D. J.
Cleaver
,
J. Phys.: Condens. Matter
13
,
4715
(
2001
).
14.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
,
J. Chem. Phys.
106
,
3721
(
1997
).
15.
Y.
Mao
,
P.
Bladon
,
H. N. W.
Lekkerkerker
, and
M. E.
Cates
,
Mol. Phys.
92
,
151
(
1997
).
16.
R.
Evans
,
Adv. Phys.
28
,
143
(
1979
).
17.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edition (Academic, New York 1986).
18.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
51
,
627
(
1949
).
19.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
20.
S.-D.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
).
21.
S-D.
Lee
,
J. Chem. Phys.
89
,
7036
(
1988
).
22.
N. H.
Phuong
,
G.
Germano
, and
F.
Schmid
,
J. Chem. Phys.
115
,
7227
(
2001
).
23.
N. H.
Phoung
,
G.
Germano
, and
F.
Schmid
,
Comput. Phys. Commun.
147
,
350
(
2002
).
24.
N. H.
Phoung
and
F.
Schmid
,
J. Chem. Phys.
119
,
1214
(
2003
).
25.
M. B.
Sweatman
,
Mol. Phys.
98
,
573
(
2000
).
26.
A.
Somoza
and
P.
Tarazona
,
J. Chem. Phys.
91
,
517
(
1989
).
27.
H.
Graf
and
H.
Löwen
,
J. Phys.: Condens. Matter
11
,
1435
(
1999
).
28.
D.
de las Heras
,
L.
Mederos
, and
E.
Velasco
,
Phys. Rev. E
68
,
031709
(
2003
).
29.
M. P.
Allen
,
J. Chem. Phys.
112
,
5447
(
2000
).
30.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipies (Cambridge University Press, Cambridge, England, 1992).
31.
P.
Tarazona
,
Phys. Rev. A
31
,
2672
(
1985
).
32.
T. K.
Vanderlick
,
L. E.
Scriven
, and
H. T.
Davis
,
J. Chem. Phys.
90
,
2422
(
1989
).
33.
G.
Cinacchi
and
F.
Schmid
,
J. Phys.: Condens. Matter
14
,
12223
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.