Ab initio all-electron molecular-orbital calculations are carried out to study the structures and relative stability of low-energy silicon clusters (Sin,n=12–20). Selected geometric isomers include those predicted by Ho et al. [Nature (London) 392, 582 (1998)] based on an unbiased search with tight-binding/genetic algorithm, as well as those found by Rata et al. [Phys. Rev. Lett. 85, 546 (2000)] based on density-functional tight-binding/single-parent evolution algorithm. These geometric isomers are optimized at the Møller–Plesset (MP2) MP2/6-31G(d) level. The single-point energy at the coupled-cluster single and double substitutions (including triple excitations) [CCSD(T)] CCSD(T)/6-31G(d) level for several low-lying isomers are further computed. Harmonic vibrational frequency analysis at the MP2/6-31G(d) level of theory is also undertaken to assure that the optimized geometries are stable. For Si12Si17 and Si19 the isomer with the lowest-energy at the CCSD(T)/6-31G(d) level is the same as that predicted by Ho et al., whereas for Si18 and Si20, the same as predicted by Rata et al. However, for Si14 and Si15, the vibrational frequency analysis indicates that the isomer with the lowest CCSD(T)/6-31G(d) single-point energy gives rise to imaginary frequencies. Small structural perturbation onto the Si14 and Si15 isomers can remove the imaginary frequencies and results in new isomers with slightly lower MP2/6-31G(d) energy; however the new isomers have a higher single-point energy at the CCSD(T)/6-31G(d) level. For most Sin (n=12–18,20) the low-lying isomers are prolate in shape, whereas for Si19 a spherical-like isomer is slightly lower in energy at the CCSD(T)/6-31G(d) level than low-lying prolate isomers.

1.
Y.
Liu
,
Q.-L.
Zhang
,
F. K.
Tittel
,
R. F.
Curl
, and
R. E.
Smalley
,
J. Chem. Phys.
85
,
7434
(
1986
);
J. L.
Elkind
,
J. M.
Alford
,
F. D.
Weiss
,
R. T.
Laaksonene
, and
R. E.
Smalley
,
J. Chem. Phys.
87
,
2397
(
1987
);
Q. L.
Zhang
,
Y.
Liu
,
R. F.
Curl
,
F. K.
Tittel
, and
R. E.
Smalley
,
J. Chem. Phys.
88
,
1670
(
1988
).
2.
M. F.
Jarrold
,
Science
252
,
1085
(
1991
);
M. F.
Jarrold
and
V. A.
Constant
,
Phys. Rev. Lett.
67
,
2994
(
1991
);
M. F.
Jarrold
and
J. E.
Bower
,
J. Chem. Phys.
96
,
9180
(
1992
).
3.
R. R.
Hudgins
,
M.
Imai
,
M. F.
Jarrold
, and
P.
Dugourd
,
J. Chem. Phys.
111
,
7865
(
1999
);
A. A.
Shvartsburg
,
R. R.
Hudgins
,
P.
Dugourd
, and
M. F.
Jarrold
,
Chem. Soc. Rev.
30
,
36
(
2001
).
4.
K.-D.
Rinnen
and
M. L.
Mandich
,
Phys. Rev. Lett.
69
,
1823
(
1992
).
5.
K.
Fuke
,
K.
Tsukamoto
,
F.
Misaizu
, and
M.
Sanekata
,
J. Chem. Phys.
99
,
7807
(
1993
).
6.
S.
Li
,
R. J.
Van Zee
,
W.
Weltner
, Jr.
, and
K.
Raghavachari
,
Chem. Phys. Lett.
243
,
275
(
1995
).
7.
B.
Marsen
,
M.
Lonfat
,
P.
Scheier
, and
K.
Sattler
,
Phys. Rev. B
62
,
6892
(
2000
).
8.
D. E.
Bergeron
and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
117
,
3219
(
2002
).
9.
D.
Tomanek
and
M. A.
Schluter
,
Phys. Rev. Lett.
56
,
1055
(
1986
);
D.
Tomanek
and
M. A.
Schluter
,
Phys. Rev. B
36
,
1208
(
1987
).
10.
E.
Kaxiras
,
Phys. Rev. Lett.
64
,
551
(
1990
).
11.
C. M.
Rohlfing
and
K.
Raghavachari
,
Chem. Phys. Lett.
167
,
559
(
1990
);
C. M.
Rohlfing
and
K.
Raghavachari
,
Chem. Phys. Lett.
198
,
521
(
1992
).
12.
B. C.
Bolding
and
H. C.
Andersen
,
Phys. Rev. B
41
,
10568
(
1990
).
13.
E.
Kaxiras
and
K.
Jackson
,
Phys. Rev. Lett.
71
,
727
(
1993
).
14.
P.
Ordej
,
D.
Lebedenko
, and
M.
Menon
,
Phys. Rev. B
50
,
5645
(
1994
).
15.
I. H.
Lee
,
K. J.
Chang
, and
Y. H.
Lee
,
J. Phys.: Condens. Matter
6
,
741
(
1994
).
16.
A.
Bahel
and
M. V.
Ramakrishna
,
Phys. Rev. B
51
,
13849
(
1995
);
M. V.
Ramakrishna
and
A.
Bahel
,
J. Chem. Phys.
104
,
9833
(
1996
).
17.
J. C.
Grossman
and
L.
Mitas
,
Phys. Rev. Lett.
95
,
1323
(
1995
).
18.
M. R.
Pederson
,
K.
Jackson
,
D. V.
Porezag
,
Z.
Hajnal
, and
Th.
Frauenheim
,
Phys. Rev. B
54
,
2863
(
1996
).
19.
A.
Sieck
,
D.
Porezag
,
Th.
Frauenheim
,
M. R.
Pederson
, and
K.
Jackson
,
Phys. Rev. A
56
,
4890
(
1997
).
20.
M.
Menon
and
K. R.
Subbaswamy
,
Phys. Rev. B
51
,
17952
(
1995
).
21.
J.
Song
,
S. E.
Ulloa
, and
D. A.
Drabold
,
Phys. Rev. B
53
,
8042
(
1996
).
22.
I.
Vasiliev
,
S.
Ogut
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
78
,
4805
(
1997
).
23.
K.-M.
Ho
,
A. A.
Shvartsburg
,
B.
Pan
,
Z.-Y.
Lu
,
C.-Z.
Wang
,
J. G.
Wacker
,
J. L.
Fye
, and
M. F.
Jarrold
,
Nature (London)
392
,
582
(
1998
);
B.
Liu
,
Z.-Y.
Lu
,
B.
Pan
,
C.-Z.
Wang
,
K.-M.
Ho
,
A. A.
Shvartsburg
, and
M. F.
Jarrold
,
J. Chem. Phys.
109
,
9401
(
1998
).
24.
A. A.
Shvartsburg
,
M. F.
Jarrold
,
B.
Liu
,
Z.-Y.
Lu
,
C.-Z.
Wang
, and
K.-M.
Ho
,
Phys. Rev. Lett.
81
,
4616
(
1998
).
25.
U.
Rothlisberger
,
W.
Andreoni
, and
M.
Parrinello
,
Phys. Rev. Lett.
72
,
665
(
1994
).
26.
L.
Mitas
,
J. C.
Grossman
,
I.
Stich
, and
J.
Tobik
,
Phys. Rev. Lett.
84
,
1479
(
2000
).
27.
I.
Rata
,
A. A.
Shvartsburg
,
M.
Horoi
,
Th.
Frauenheim
,
K. W. M.
Siu
, and
K. A.
Jackson
,
Phys. Rev. Lett.
85
,
546
(
2000
).
28.
B. X.
Li
and
P. L.
Cao
,
Phys. Rev. A
62
,
023201
(
2000
).
29.
Z.-Y.
Lu
,
C.-Z.
Wang
, and
K.-M.
Ho
,
Phys. Rev. B
61
,
2329
(
2001
).
30.
X.
Zhu
and
X. C.
Zeng
,
J. Chem. Phys.
118
,
3558
(
2003
).
31.
J. R.
Chelikowsky
,
Phys. Rev. Lett.
60
,
2669
(
1988
).
32.
J. R.
Chelikowsky
and
J. C.
Philips
,
Phys. Rev. Lett.
63
,
1653
(
1989
).
33.
K.
Raghavachari
,
Phase Transitions
24–26
,
61
(
1990
).
34.
U.
Rothlisberger
,
W.
Andreoni
, and
P.
Giannozzi
,
J. Chem. Phys.
96
,
1248
(
1992
).
35.
B.-L.
Gu
,
Z.-Q.
Li
, and
J.-L.
Zhu
,
J. Phys.: Condens. Matter
5
,
5255
(
1993
).
36.
B. C.
Pan
,
C. Z.
Wang
,
D. E.
Turner
, and
K.-M.
Ho
,
Chem. Phys. Lett.
292
,
75
(
1998
).
37.
K.
Jackson
,
M.
Pederson
,
C.-Z.
Wang
, and
K.-M.
Ho
,
Phys. Rev. A
59
,
3685
(
1999
).
38.
B.-X.
Li
,
P.-L.
Cao
, and
S.-C.
Zhan
,
Phys. Lett. A
316
,
252
(
2003
).
39.
S. N.
Behera
,
B. K.
Panda
,
S.
Mukherjee
, and
P.
Entel
,
Phase Transitions
75
,
41
(
2002
).
40.
Q.
Sun
,
Q.
Wang
,
P.
Jena
,
S.
Waterman
, and
Y.
Kawazoe
,
Phys. Rev. A
67
,
063201
(
2003
).
41.
S.
Yoo
,
X. C.
Zeng
,
X.
Zhu
, and
J.
Bai
,
J. Am. Chem. Soc.
125
,
13316
(
2003
).
42.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.11, Gaussian, Inc., Pittsburgh, PA, 2002.
43.
E. C.
Honea
,
A.
Ogura
,
C. A.
Murray
,
K.
Raghavachari
,
W. O.
Sprenger
,
M. F.
Jarrold
, and
W. L.
Brown
,
Nature (London)
366
,
42
(
1993
).
44.
H. Haberland, Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms (Springer, New York, 1994).
This content is only available via PDF.
You do not currently have access to this content.