Laser-induced dispersed fluorescence spectra of benzoic acid dimer in the cold environment of supersonic jet expansion have been reinvestigated with improved spectral resolution of measurements. The spectra are analyzed with the aid of the normal mode vibrations of the dimer calculated by the ab initio quantum chemistry method at the DFT/B3LYP/6-311+G** level of theory. The analysis reveals that the low-frequency intermolecular hydrogen bond modes are mixed extensively with the carboxyl as well as aromatic ring vibrations upon electronic excitation. The mode mixing is manifested as the complete loss of mirror symmetry relation between the fluorescence excitation and dispersed fluorescence spectra of the S1 origin, and appearance of large number of cross-sequence transitions when the DF spectra are measured by exciting the low-energy vibrations near the S1 origin. The cross-sequence bands are found in all the cases to be the combinations of two nontotally symmetric fundamentals consisting of one of the intermolecular hydrogen bond modes and the other from the aromatic ring and carboxyl group vibrations. The implications of this mode mixing on the excited state dynamics of the dimer are discussed.

1.
P. F. J.
de Rege
,
S. A.
Williams
, and
M. J.
Therien
,
Science
269
,
1409
(
1995
).
2.
R. I.
Cukier
and
D. G.
Nocera
,
Annu. Rev. Phys. Chem.
49
,
337
(
1998
).
3.
S.
Hammes-Schiffer
,
Acc. Chem. Res.
34
,
273
(
2001
).
4.
F.
Madeja
and
M.
Havenith
,
J. Chem. Phys.
117
,
7162
(
2002
), and references therein.
5.
F.
Ito
and
T.
Nakanaga
,
Chem. Phys.
277
,
163
(
2002
).
6.
T.
Häber
,
U.
Schmitt
,
C.
Emmeluth
, and
M. A.
Suhm
,
Faraday Discuss.
118
,
331
(
2001
).
7.
G. M.
Florio
,
E. L.
Sibert
III
, and
T. S.
Zwier
,
Faraday Discuss.
118
,
315
(
2001
).
8.
G. M.
Florio
,
T. S.
Zwier
,
E. M.
Myshakin
,
K. D.
Jordan
, and
E. L.
Sibert
, III
,
J. Chem. Phys.
118
,
1735
(
2003
).
9.
D. E.
Poeltl
and
J. K.
McVey
,
J. Chem. Phys.
78
,
4349
(
1983
).
10.
D. E.
Poeltl
and
J. K.
McVey
,
J. Chem. Phys.
80
,
1801
(
1984
).
11.
Y.
Tomioka
,
H.
Abe
,
N.
Mikami
, and
M.
Ito
,
J. Phys. Chem.
88
,
2263
(
1984
).
12.
K.
Remmers
,
W. L.
Meerts
, and
I.
Ozier
,
J. Chem. Phys.
112
,
10890
(
2000
).
13.
J. C.
Baum
and
D. S.
McClure
,
J. Am. Chem. Soc.
102
,
720
(
1980
), and references therein.
14.
S. S.
Panja
and
T.
Chakraborty
,
J. Phys. Chem. A
107
,
10984
(
2003
).
15.
A.
Das
,
C. K.
Nandi
, and
T.
Chakraborty
,
J. Chem. Phys.
118
,
9589
(
2003
).
16.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A. 11.1, Gaussian Inc., Pittsburgh, PA, 1998.
17.
J. A.
Warren
,
J. M.
Hayes
, and
G. J.
Small
,
J. Chem. Phys.
80
,
1786
(
1984
).
18.
J. A.
Warren
,
J. M.
Hayes
, and
G. J.
Small
,
Chem. Phys.
102
,
323
(
1986
).
19.
R.
Knochenmuss
,
P. L.
Muino
, and
C.
Wickleder
,
J. Phys. Chem.
100
,
11218
(
1996
).
20.
T. A.
Stephenson
,
P. L.
Radloff
, and
S. A.
Rice
,
J. Chem. Phys.
81
,
1060
(
1984
).
21.
G. M.
Sando
,
K. G.
Spears
,
J. T.
Hupp
, and
P. T.
Ruhoff
,
J. Phys. Chem. A
105
,
5317
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.