The dissociative recombination (DR) process of NH4+ and ND4+ molecular ions with free electrons has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The absolute cross sections for DR of NH4+ and ND4+ in the collision energy range 0.001–1 eV are reported, and thermal rate coefficients for the temperature interval from 10 to 2000 K are calculated from the experimental data. The absolute cross section for NH4+ agrees well with earlier work and is about a factor of 2 larger than the cross section for ND4+. The dissociative recombination of NH4+ is dominated by the product channels NH3+H(0.85±0.04) and NH2+2H(0.13±0.01), while the DR of ND4+ mainly results in ND3+D(0.94±0.03).Ab initio direct dynamics simulations, based on the assumption that the dissociation dynamics is governed by the neutral ground-state potential energy surface, suggest that the primary product formed in the DR process is NH3+H. The ejection of the H atom is direct and leaves the NH3 molecule highly vibrationally excited. A fraction of the excited ammonia molecules may subsequently undergo secondary fragmentation forming NH2+H. It is concluded that the model results are consistent with gross features of the experimental results, including the sensitivity of the branching ratio for the three-body channel NH2+2H to isotopic exchange.

1.
A.
Sternberg
and
A.
Dalgarno
,
Astrophys. J., Suppl. Ser.
99
,
565
(
1995
).
2.
E.
Herbst
and
W.
Klemperer
,
Astrophys. J.
185
,
505
(
1973
).
3.
D. C.
Lis
,
E.
Roueff
,
M.
Gerin
,
T. G.
Phillips
,
L. H.
Coudert
,
F. F. S.
van der Tak
, and
P.
Schilke
,
Astrophys. J. Lett.
571
,
L55
(
2002
).
4.
F. F. S.
van der Tak
,
P.
Schilke
,
H. S. P.
Müller
,
D. C.
Lis
,
T. G.
Phillips
,
M.
Gerin
, and
E.
Roueff
,
Astron. Astrophys.
388
,
L53
(
2002
).
5.
F. C.
Fehsenfeld
and
E. E.
Ferguson
,
J. Chem. Phys.
59
,
6272
(
1973
).
6.
C.-M.
Huang
,
M. A.
Biondi
, and
R.
Johnsen
,
Phys. Rev. A
14
,
984
(
1976
).
7.
E.
Alge
,
N. G.
Adams
, and
D.
Smith
,
J. Phys. B
16
,
1433
(
1983
).
8.
R. D.
DuBois
,
J. B.
Jeffries
, and
G. H.
Dunn
,
Phys. Rev. A
17
,
1314
(
1978
).
9.
N. G.
Adams
,
C. R.
Herd
,
M.
Geoghegan
,
D.
Smith
,
A.
Canosa
,
J. C.
Gomet
,
B. R.
Rowe
,
J. L.
Queffelec
, and
M.
Morlais
,
J. Chem. Phys.
94
,
4852
(
1991
).
10.
J. B. A.
Mitchell
,
Phys. Rep.
186
,
215
(
1990
).
11.
M.
Larsson
,
Rep. Prog. Phys.
58
,
1267
(
1995
).
12.
M.
Larsson
,
Annu. Rev. Phys. Chem.
48
,
151
(
1997
).
13.
L.
Vikor
,
A. Al
Khalili
,
H.
Danared
,
N.
Djuric
,
G. H.
Dunn
,
M.
Larsson
,
A. Le
Padellec
,
S.
Rosén
, and
M.
af Ugglas
,
Astron. Astrophys.
344
,
1027
(
1999
).
14.
A.
Neau
,
A. Al
Khalili
,
S.
Rosén
, et al.,
J. Chem. Phys.
113
,
1762
(
2000
).
15.
M. B.
Någård
,
J. B. C.
Pettersson
,
A. M.
Derkatch
, et al.,
J. Chem. Phys.
117
,
5264
(
2002
).
16.
J. R.
Peterson
,
A. Le
Padellec
,
H.
Danared
, et al.,
J. Chem. Phys.
108
,
1978
(
1998
).
17.
H.
Danared
,
G.
Andler
,
L.
Bagge
,
C. J.
Herrlander
,
J.
Hilke
,
J.
Jeansson
,
A.
Källberg
,
A.
Nilsson
,
A.
Paál
,
K.-G.
Rensfelt
,
U.
Rosengård
,
J.
Starker
, and
M.
af Ugglas
,
Phys. Rev. Lett.
72
,
3775
(
1994
).
18.
H.
Danared
,
A.
Källberg
,
G.
Andler
,
L.
Bagge
,
F.
Österdahl
,
A.
Paal
,
K.-G.
Rensfelt
,
A.
Simonsson
,
Ö.
Skeppstedt
, and
M.
af Ugglas
,
Nucl. Instrum. Methods Phys. Res. A
441
,
123
(
2000
).
19.
D. R.
DeWitt
,
R.
Schuch
,
H.
Gao
,
W.
Zong
,
S.
Asp
,
C.
Biedermann
,
M. H.
Chen
, and
N. R.
Badnell
,
Phys. Rev. A
53
,
2327
(
1996
).
20.
A.
Lampert
,
A.
Wolf
,
D.
Habs
,
J.
Kenntner
,
G.
Kilgus
,
D.
Schwalm
,
M. S.
Pindzola
, and
N. R.
Badnell
,
Phys. Rev. A
53
,
1413
(
1996
).
21.
E. P.
Wigner
,
Phys. Rev.
73
,
1002
(
1948
).
22.
M. P.
Skrzypkowski
and
R.
Johnsen
,
Chem. Phys. Lett.
274
,
473
(
1997
).
23.
A.
Suzor-Weiner
and
I. F.
Schneider
,
Nature (London)
412
,
871
(
2001
).
24.
V.
Kookouline
,
C. H.
Greene
, and
B. D.
Esry
,
Nature (London)
412
,
891
(
2001
).
25.
S. L.
Guberman
,
Science
294
,
1474
(
2001
).
26.
D.
Strasser
,
J.
Levin
,
H. B.
Pedersen
,
O.
Heber
,
A.
Wolf
,
D.
Schwalm
, and
D.
Zajfman
,
Phys. Rev. A
65
,
010702
(
2001
).
27.
A.
Faure
and
J.
Tennyson
,
J. Phys. B
35
,
1865
(
2002
).
28.
M.
Tashiro
and
S.
Kato
,
J. Chem. Phys.
117
,
2053
(
2002
).
29.
E. L.
Hamilton
and
C. H.
Green
,
Phys. Rev. Lett.
89
,
263003
(
2002
).
30.
M. J. Frisch et al., computer code GAUSSIAN 98, revision A.9, Gaussian, Inc., Pittsburgh, PA, 1998.
31.
D. R.
Bates
,
J. Phys. B
24
,
3267
(
1991
).
32.
D. R.
Bates
,
Adv. At., Mol., Opt. Phys.
34
,
427
(
1994
).
33.
A. E.
Ketvirtis
and
J.
Simons
,
J. Phys. Chem. A
103
,
6552
(
1999
).
34.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
8361
(
1992
).
35.
J. M. L.
Martin
and
T. J.
Lee
,
Chem. Phys. Lett.
258
,
129
(
1996
).
36.
J. M. L.
Martin
,
Chem. Phys. Lett.
273
,
98
(
1997
).
37.
J. K.
Park
,
J. Chem. Phys.
107
,
6795
(
1997
).
38.
J. K.
Park
,
J. Chem. Phys.
109
,
9753
(
1998
).
39.
P.
Jensen
,
R. J.
Buenker
,
G.
Hirsch
, and
S. N.
Rai
,
Mol. Phys.
70
,
443
(
1990
).
40.
R.
Signorell
,
H.
Palm
, and
F.
Merkt
,
J. Chem. Phys.
106
,
6523
(
1997
).
41.
F.
Chen
and
E. R.
Davidson
,
J. Phys. Chem. A
105
,
10915
(
2001
).
42.
H.
Tachikawa
,
Phys. Chem. Chem. Phys.
2
,
4327
(
2000
).
43.
E.
Herbst
,
Astrophys. J.
222
,
508
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.