An efficient and general method for the analytic computation of the nonandiabatic coupling vector at the multireference configuration interaction (MR-CI) level is presented. This method is based on a previously developed formalism for analytic MR-CI gradients adapted to the use for the computation of nonadiabatic coupling terms. As was the case for the analytic energy gradients, very general, separate choices of invariant orbital subspaces at the multiconfiguration self-consistent field and MR-CI levels are possible, allowing flexible selections of MR-CI wave functions. The computational cost for the calculation of the nonadiabatic coupling vector at the MR-CI level is far below the cost for the energy calculation. In this paper the formalism of the method is presented and in the following paper [Dallos et al., J. Chem. Phys. 120, 7330 (2004)] applications concerning the optimization of minima on the crossing seam are described.

1.
P. Pulay, in Applications of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), p. 153.
2.
Y.
Osamura
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
77
,
383
(
1982
).
3.
R.
Krishnan
,
H. B.
Schlegel
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4654
(
1980
).
4.
J. A.
Pople
,
R.
Krishnan
,
H. B.
Schlegel
, and
J. S.
Binkley
,
Int. J. Quantum Chem., Symp.
13
,
225
(
1979
).
5.
R. J. Bartlett, in Geometrical Derivatives of Energy Surfaces and Molecular Properties, edited by P. Jørgensen and J. Simons (Reidel, Dordrecht, 1986), p. 35.
6.
P.
Jørgensen
and
J.
Simons
,
J. Chem. Phys.
79
,
334
(
1983
).
7.
T.
Helgaker
and
J.
Almlöf
,
Int. J. Quantum Chem.
26
,
275
(
1984
).
8.
M.
Page
,
P.
Saxe
,
G. F.
Adams
, and
B. H.
Lengsfield
,
J. Chem. Phys.
81
,
434
(
1984
).
9.
R.
Shepard
,
Int. J. Quantum Chem.
31
,
33
(
1987
).
10.
R. Shepard, in Modern Electronic Structure Theory, Part I, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 345.
11.
R.
Shepard
,
H.
Lischka
,
P. G.
Szalay
,
T.
Kovar
, and
M.
Ernzerhof
,
J. Chem. Phys.
96
,
2085
(
1992
).
12.
H.
Lischka
,
M.
Dallos
, and
R.
Shepard
,
Mol. Phys.
100
,
1647
(
2002
).
13.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quantum Chem., Quantum Chem. Symp.
15
,
91
(
1981
).
14.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
et al.,
Int. J. Quantum Chem., Quantum Chem. Symp.
22
,
149
(
1988
).
15.
H.
Lischka
,
R.
Shepard
,
R. M.
Pitzer
, et al.,
Phys. Chem. Chem. Phys.
3
,
664
(
2001
).
16.
COLUMBUS, An Ab Initio Electronic Structure Program, release 5.8 (2001), written by H. Lischka, R. Shepard, I. Shavitt et al.
17.
J. v.
Neumann
and
E.
Wigner
,
Phys. Z.
30
,
467
(
1929
).
18.
E.
Teller
,
J. Chem. Phys.
41
,
109
(
1937
).
19.
G.
Herzberg
and
H. C.
Longuett-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
20.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
21.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
22.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
23.
G. J.
Atchity
,
S. S.
Xantheas
, and
K.
Ruedenberg
,
J. Phys. Chem.
95
,
1862
(
1991
).
24.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
25.
D. R. Yarkony, in Modern Electronic Structure Theory, Part I, edited by D. R. Yarkony (World Scientific, Singapore, 1995), p. 642.
26.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
27.
F.
Bernardi
,
M.
Olivucci
, and
M. A.
Robb
,
Chem. Soc. Rev.
1996
,
28.
N.
Koga
and
K.
Morokuma
,
Chem. Phys. Lett.
119
,
371
(
1985
).
29.
A.
Farazdel
and
M.
Dupuis
,
J. Comput. Chem.
12
,
276
(
1991
).
30.
D. R.
Yarkony
,
J. Phys. Chem.
97
,
4407
(
1993
).
31.
M. R.
Manaa
and
D. R.
Yarkony
,
J. Chem. Phys.
99
,
5251
(
1993
).
32.
I. N.
Ragazos
,
M. A.
Robb
,
F.
Bernardi
, and
M.
Olivucci
,
Chem. Phys. Lett.
197
,
217
(
1992
).
33.
M. J.
Bearpark
,
M. A.
Robb
, and
H. B.
Schlegel
,
Chem. Phys. Lett.
223
,
269
(
1994
).
34.
B. H.
Lengsfield
III
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Phys. Chem.
81
,
4549
(
1984
).
35.
P.
Saxe
,
B. H.
Lengsfield
, and
D. R.
Yarkony
,
Chem. Phys. Lett.
113
,
159
(
1985
).
36.
M. Dallos, H. Lischka, R. Shepard, D. R. Yarkony, and P. G. Szalay, J. Chem. Phys. 120, 7330 (2004), following paper.
37.
K. K.
Docken
and
J.
Hinze
,
J. Chem. Phys.
57
,
4928
(
1972
).
38.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
39.
R. N.
Diffenderfer
and
D. R.
Yarkony
,
J. Phys. Chem.
86
,
5098
(
1982
).
40.
M.
Page
,
P.
Saxe
,
G. F.
Adams
, and
B. H.
Lengsfield
III
,
J. Chem. Phys.
81
,
434
(
1984
).
41.
T. Helgaker, in Geometrical Derivatives of Energy Surfaces and Molecular Properties, edited by P. Jørgensen and J. Simons (Reidel, Dordrecht, 1986), p. 1.
42.
J.
Olsen
,
K. L.
Bak
,
K.
Ruud
,
T.
Helgaker
, and
P.
Jørgensen
,
Theor. Chim. Acta
90
,
421
(
1995
).
43.
K.
Ruud
,
T.
Helgaker
,
J.
Olsen
,
P.
Jørgensen
, and
K. L.
Bak
,
Chem. Phys. Lett.
235
,
47
(
1995
).
44.
R. Shepard, in Advances in Chemical Physics, Ab Initio Methods in Quantum Chemistry II, edited by K. P. Lawley (Wiley, New York, 1987), p. 63.
45.
N. C.
Handy
and
H. F.
Schaefer
III
,
J. Chem. Phys.
81
,
5031
(
1984
).
46.
M. R.
Manaa
and
D. R.
Yarkony
,
J. Chem. Phys.
99
,
5251
(
1993
).
47.
M. J.
Bearpark
,
M. A.
Robb
, and
H. B.
Schlegel
,
Chem. Phys. Lett.
223
,
269
(
1994
).
48.
T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, et al., DALTON, an ab initio electronic structure program, Release 1.0, 1997.
49.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.