This paper presents a revised and improved version of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. The performance of this functional is assessed on a variety of molecules for the prediction of enthalpies of formation, geometries, and vibrational frequencies, yielding results as good as or better than the successful PBE0 hybrid functional. Results for ionization potentials and electron affinities are of slightly lower quality but are still acceptable. The comprehensive test results presented here validate our assumption that the screened, short-range Hartree–Fock (HF) exchange exhibits all physically relevant properties of the full HF exchange. Thus, hybrids can be constructed which neglect the computationally demanding long-range part of HF exchange while still retaining the superior accuracy of hybrid functionals, compared to pure density functionals.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
J. P.
Perdew
,
Phys. Rev. Lett.
55
,
1665
(
1985
).
3.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
4.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
5.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
6.
V. N.
Staroverov
,
G. E.
Scuseria
,
J.
Tao
, and
J. P.
Perdew
,
Phys. Rev. B
69
,
075102
(
2004
).
7.
G. E.
Scuseria
,
J. Phys. Chem.
103
,
4782
(
1999
).
8.
W.
Kohn
,
Int. J. Quantum Chem.
56
,
229
(
1995
).
9.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
10.
D. Pines, Elementary Excitations in Solids (Perseus Books, Reading, MA, 1999).
11.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M. W.
Gill
,
Chem. Phys. Lett.
254
,
329
(
1996
).
12.
P. M. W.
Gill
,
R. D.
Adamson
, and
J. A.
Pople
,
Mol. Phys.
88
,
1005
(
1996
).
13.
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory (Elsevier, B. V., 1996), pp. 327–357.
14.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
H.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
15.
A.
Seidl
,
A.
Görling
,
P.
Vogl
, and
J. A.
Majewski
,
Phys. Rev. B
53
,
3764
(
1996
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
18.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
19.
M.
Ernzerhof
and
J. P.
Perdew
,
J. Chem. Phys.
109
,
3313
(
1998
).
20.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1977).
21.
J. Heyd, http://python.rice.edu/∼guscus (2003).
22.
E. H.
Lieb
and
S.
Oxford
,
Int. J. Quantum Chem.
19
,
427
(
1981
).
23.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian Development Version, Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
24.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
25.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
26.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
27.
V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew (unpublished).
28.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
29.
J. M.
Galbraith
and
H. F.
Schaefer
III
,
J. Chem. Phys.
105
,
862
(
1996
).
30.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
III
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
,
231
(
2002
).
31.
N.
Rösch
and
S. B.
Trickey
,
J. Chem. Phys.
106
,
8940
(
1997
).
32.
W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2002), Chap. 8.1.2, pp. 127–130.
This content is only available via PDF.
You do not currently have access to this content.