The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) explicit decomposition of the total system electron density is invoked; (2) the charge is defined through the density decomposition into constituent contributions; (3) the charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) a reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of “knowable” quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.

1.
R. T.
Sanderson
,
Science
114
,
670
(
1951
).
2.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
), hereafter referred to as PPLB.
3.
R. G.
Parr
and
R. G.
Pearson
,
J. Am. Chem. Soc.
105
,
7512
(
1983
).
4.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
5.
A. K.
Rappe
and
W. A.
Goddard
III
,
J. Phys. Chem.
95
,
3358
(
1991
).
6.
F. H.
Streitz
and
J. W.
Mintmire
,
Thin Solid Films
253
,
179
(
1994
);
F. H.
Streitz
and
J. W.
Mintmire
,
Phys. Rev. B
50
,
11996
(
1994
);
F. H.
Streitz
and
J. W.
Mintmire
,
Langmuir
12
,
4605
(
1996
).
7.
D. T.
Nguyen
,
A. C.
Scheiner
,
J. W.
Andzelm
,
S.
Sirois
,
D. R.
Salahub
, and
A. T.
Hagler
,
J. Comput. Chem.
18
,
1609
(
1997
);
L. F.
Pacios
and
P. C.
Gómez
,
J. Mol. Struct.: THEOCHEM
544
,
237
(
2001
).
8.
S.-Y.
Sheu
,
D.-Y.
Yang
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Phys. Chem. A
106
,
9390
(
2002
).
9.
S.
Hammes-Schiffer
,
Acc. Chem. Res.
34
,
273
(
2001
).
10.
M. I. Page, “The mechanism of chemical catalysis used by enzymes,” in New Comprehensive Biochemistry, edited by M. I. Page (Elsevier, Amsterdam, 1984), Vol. 6, pp. 229–270.
11.
S. J.
Benkovic
and
S.
Hammes-Schiffer
,
Science
301
,
1196
(
2003
).
12.
J.-W.
van der Horst
,
P. A.
Bobbert
,
P. H. L.
de Jong
,
M. A. J.
Michels
,
G.
Brock
, and
P. J.
Kelly
,
Phys. Rev. B
61
,
15817
(
2000
);
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. B
62
,
4927
(
2000
);
M.
Rohlfing
,
M. L.
Tiago
, and
S. G.
Louie
,
Synth. Met.
116
,
101
(
2001
).
13.
R. G.
Parr
and
L. J.
Bartolotti
,
J. Am. Chem. Soc.
104
,
3801
(
1982
).
14.
R. F.
Nalewajski
,
J. Am. Chem. Soc.
106
,
944
(
1984
).
15.
R. G. Pearson, Hard and Soft Acids and Bases (Dowden, Hutchinson, and Ross, Stroudenberg, PA, 1973).
16.
R. F.
Nalewajski
and
R. G.
Parr
,
J. Chem. Phys.
77
,
399
(
1982
).
17.
R. F.
Nalewajski
and
M.
Koniński
,
J. Phys. Chem.
88
,
6234
(
1984
).
18.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
19.
J.
Ciosłowski
and
B. B.
Stefanov
,
J. Chem. Phys.
99
,
5151
(
1993
).
20.
U. W.
Schmitt
and
G. A.
Voth
,
J. Phys. Chem. B
102
,
5547
(
1998
);
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
);
M.
Čuma
,
U. W.
Schmitt
, and
G. A.
Voth
,
J. Phys. Chem. A
105
,
2814
(
2001
).
21.
A.
Alavi
,
L. J.
Alvarez
,
S. R.
Elliott
, and
I. R.
McDonald
,
Philos. Mag. B
65
,
489
(
1992
).
22.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
23.
Y.-P.
Liu
,
K.
Kim
,
B. J.
Berne
,
R. A.
Friesner
, and
S. W.
Rick
,
J. Chem. Phys.
108
,
4739
(
1998
).
24.
R. P.
Iczkowski
and
J. L.
Margrave
,
J. Am. Chem. Soc.
83
,
3547
(
1961
).
25.
G.
Klopman
,
J. Chem. Phys.
43
,
S124
(
1965
).
26.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).
27.
L.
von Szentpály
,
J. Mol. Struct.: THEOCHEM
233
,
71
(
1991
).
28.
L.
von Szentpály
,
Chem. Phys. Lett.
245
,
209
(
1995
).
29.
L.
von Szentpály
and
D. O.
Niel Gardner
,
J. Phys. Chem. A
105
,
9467
(
2001
).
30.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
,
J. Am. Chem. Soc.
108
,
4315
(
1986
).
31.
P.
Geerlings
,
F.
De Proft
, and
W.
Langennaeker
,
Chem. Rev. (Washington, D.C.)
103
,
1793
(
2003
).
32.
L.
Jaroszewski
,
B.
Lesyng
, and
J. A.
McCammon
,
J. Mol. Struct.: THEOCHEM
283
,
57
(
1993
);
P.
Grochowski
,
B.
Lesyng
,
P.
Bała
, and
J. A.
McCammon
,
Int. J. Quantum Chem.
60
,
1143
(
1996
);
J.
Trylska
,
P.
Grochowski
, and
M.
Geller
,
Int. J. Quantum Chem.
82
,
86
(
2001
).
33.
R. F.
Nalewajski
,
Int. J. Quantum Chem.
69
,
591
(
1998
).
34.
J.
Morales
and
T. J.
Martinez
,
J. Phys. Chem. A
105
,
2842
(
2001
).
35.
J. P. Perdew, in Density Functional Methods in Physics, NATO Advanced Science Institute Series, edited by R. M. Dreizler and J. da Providência (Plenum, New York, 1984), Vol. 123.
36.
C. A. Coulson, Valence, 2nd ed. (Oxford University Press, Oxford, 1961).
37.
J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Valence Theory (Wiley, New York, 1965).
38.
R. McWeeny, Coulson’s Valence (Oxford University Press, Oxford, 1979).
39.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
40.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
41.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
42.
W.
Moffitt
,
Proc. R. Soc. London, Ser. A
210
,
245
(
1951
).
43.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990).
44.
R. G.
Parr
,
R. A.
Donnelly
,
M.
Levy
, and
W. E.
Palke
,
J. Chem. Phys.
68
,
3801
(
1978
).
45.
M. F.
Guse
,
J. Chem. Phys.
75
,
828
(
1981
).
46.
L.
Li
and
R. G.
Parr
,
J. Chem. Phys.
84
,
1704
(
1986
).
47.
M. J.
Mehl
,
L. L.
Boyer
, and
H. T.
Stokes
,
J. Phys. Chem. Solids
57
,
1405
(
1996
);
H. T.
Stokes
,
L. L.
Boyer
, and
M. J.
Mehl
,
Phys. Rev. B
54
,
7729
(
1996
).
48.
A preliminary version of this work has been presented.
S. R.
Atlas
and
S. M.
Valone
,
Bull. Am. Phys. Soc.
47
,
1213
Part
(
2002
);
(to be submitted).
49.
P.-O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
50.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
51.
C. A.
Coulson
and
U.
Danielsson
,
Ark. Fys.
8
,
239
(
1954
).
52.
A.
Warshel
and
A.
Bromberg
,
J. Chem. Phys.
52
,
1262
(
1970
);
A.
Warshel
and
R. M.
Wiess
,
J. Am. Chem. Soc.
102
,
6218
(
1980
);
J.
Åqvist
and
A.
Warshel
,
Chem. Rev. (Washington, D.C.)
93
,
2523
(
1993
).
53.
S. M.
Valone
,
J. Chem. Phys.
73
,
1344
(
1980
);
S. M.
Valone
,
J. Chem. Phys.
73
,
4653
(
1980
).
54.
R. S.
Mulliken
,
Phys. Rev.
50
,
1017
(
1936
);
R. S.
Mulliken
,
Phys. Rev.
50
,
1028
(
1936
).
55.
J. Q.
Broughton
and
M. J.
Mehl
,
Phys. Rev. B
59
,
9259
(
1999
).
56.
S.
Weinbaum
,
J. Chem. Phys.
1
,
593
(
1933
).
57.
C. A.
Coulson
and
I. H.
Fischer
,
Philos. Mag.
40
,
386
(
1949
).
58.
B.
Barbiellini
and
A.
Shukla
,
Phys. Rev. B
66
,
235101
(
2002
);
T. K.
Ghanty
,
V. N.
Staroverov
,
P. R.
Koern
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
122
,
1210
(
2000
).
59.
A.
Cedillo
,
P. K.
Chattaraj
, and
R. G.
Parr
,
Int. J. Quantum Chem.
77
,
403
(
2000
).
60.
K.
Ruedenberg
,
Rev. Mod. Phys.
34
,
326
(
1962
).
61.
R. F.
Nalewajski
and
R. G.
Parr
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
8879
(
2000
).
62.
R. F.
Nalewajski
and
R.
Loska
,
Theor. Chem. Acc.
105
,
374
(
2001
).
63.
R. F.
Nalewajski
and
R. G.
Parr
,
J. Phys. Chem. A
105
,
7391
(
2001
).
64.
J. W.
Storer
,
D. J.
Giesen
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Comput.-Aided Mol. Des.
9
,
87
(
1995
).
65.
J.
Li
,
T.
Zhu
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
1820
(
1998
).
66.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
67.
P. W.
Ayers
,
J. Chem. Phys.
113
,
10886
(
2000
).
68.
Y.
Wang
and
R. G.
Parr
,
Phys. Rev. A
47
,
R1591
(
1993
).
69.
M. I.
Baskes
,
Phys. Rev. Lett.
59
,
2666
(
1987
).
70.
M. I.
Baskes
,
J. S.
Nelson
, and
A. F.
Wright
,
Phys. Rev. B
40
,
6085
(
1989
).
71.
M. I.
Baskes
,
Phys. Rev. B
46
,
2727
(
1992
).
72.
J.
Rychlewski
and
R. G.
Parr
,
J. Chem. Phys.
84
,
1696
(
1986
).
73.
J. M.
Parks
and
R. G.
Parr
,
J. Chem. Phys.
28
,
335
(
1958
).
74.
For an arbitrary set of basis wave functions, there is no simple way to determine which wave functions map to which densities. Even in a finite basis set, pathological cases are possible.
75.
R.
Rydberg
,
Z. Phys.
73
,
376
(
1931
);
O.
Klein
,
Z. Phys.
76
,
266
(
1932
);
A.
Rees
,
Proc. Phys. Soc. London
59
,
998
(
1947
).
76.
G.
Di Lonardo
and
A. E.
Douglas
,
Can. J. Phys.
51
,
434
(
1973
).
77.
Y. C.
Chan
,
D. R.
Harding
, and
W. C.
Stwalley
,
J. Chem. Phys.
85
,
2436
(
1986
).
78.
A.
Pardo
,
J. J.
Camacho
, and
J. M. L.
Poyato
,
Chem. Phys.
108
,
15
(
1986
).
79.
J. H.
Rose
,
J.
Ferrante
, and
J. R.
Smith
,
Phys. Rev. Lett.
47
,
675
(
1981
);
J. H.
Rose
,
J.
Ferrante
, and
J. R.
Smith
,
Phys. Rev. B
28
,
1835
(
1983
);
J. H.
Rose
,
J. R.
Smith
,
F.
Guinea
, and
J.
Ferrante
,
Phys. Rev. B
29
,
2963
(
1984
);
J.
Ferrante
and
J. R.
Smith
,
Phys. Rev. B
31
,
3427
(
1985
);
J. R.
Smith
,
H.
Schlosser
,
W.
Leaf
,
J.
Ferrante
, and
J. H.
Rose
,
Phys. Rev. A
39
,
514
(
1989
).
80.
J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 1: International Series in Pure and Applied Physics, edited by L. I. Schiff (McGraw-Hill, New York, 1963).
This content is only available via PDF.
You do not currently have access to this content.