With the view of understanding the low frequency (40–50 cm−1) motional processes in L-alanine around 4 K, we have carried out heat capacity (CP) and electron spin echo (ESE) measurements on L-alanine and L-alanine-d7. The obtained CP data show the so-called boson peak (seen as a maximum in CP/T3 versus T plots) in the low temperature region (1.8–20 K). The phase memory time, TM, and spin lattice relaxation time, T1, of the spin probe, the so-called first stable alanine radical (SAR1), CHCH3COOH, have been measured between 4 and 105 K. The obtained relaxation rate 1/T1 shows an anomalous increase which coincides with the emergence of a boson peak in the low temperature region (4–20 K). Together, the ESE and the CP data confirm the existence of a thermally activated dynamic orientational disorder in the lattices of both compounds below 20 K. The results help explain the discrepancy between the CP data from powders and single crystals of alanine, as well as the proanomalous relaxation mechanisms for SAR1 in these lattices, and they also provide a mechanism for the spin-lattice relaxation process for SAR1 at cryogenic temperatures.

1.
J.
Dovbeshko
and
L. J.
Berezhinsky
,
J. Mol. Struct.
450
,
121
(
1998
).
2.
C. H.
Wang
and
R. D.
Sorms
,
J. Chem. Phys.
55
,
5110
(
1971
).
3.
A.
Migliori
,
P. M.
Maxton
,
A. M.
Clogston
,
E.
Zirngiebl
, and
M.
Lowe
,
Phys. Rev. B
38
,
13464
(
1988
).
4.
M.
Barthes
,
A. F.
Vik
,
A.
Spire
,
H. N.
Bordallo
, and
J.
Eckert
,
J. Phys. Chem. A
106
,
5230
(
2002
).
5.
T. J.
Kosic
,
R. E.
Cline
, Jr.
, and
D. D.
Dlott
,
Chem. Phys. Lett.
103
,
109
(
1983
).
6.
T. J.
Kosic
,
R. E.
Cline
, Jr.
, and
D. D.
Dlott
,
J. Chem. Phys.
81
,
4932
(
1984
).
7.
R. A.
Crowell
, and
E. L.
Chronister
,
Phys. Rev. B
48
,
172
(
1993
).
8.
H. N.
Bordallo
,
M.
Barthes
, and
J.
Eckert
,
Physica B
241–243
,
1138
(
1998
).
9.
R. S.
Kwok
,
P.
Maxton
, and
A.
Migliori
,
Solid State Commun.
74
,
1193
(
1990
).
10.
M.
Daurel
,
P.
Delhaes
, and
E.
Dupart
,
Biopolymers
14
,
801
(
1975
).
11.
C.
Talón
,
M. A.
Ramos
,
S.
Vieira
et al.,
Phys. Rev. B
58
,
745
(
1998
).
12.
C.
Talón
,
M. A.
Ramos
, and
S.
Vieira
,
Phys. Rev. B
66
,
12201
(
2002
).
13.
M. A.
Ramos
,
C.
Talón
, and
S.
Vieira
,
J. Non-Cryst. Solids
307–310
,
80
(
2002
).
14.
K.
Itoh
and
I.
Miyagawa
,
J. Chem. Phys.
40
,
3328
(
1969
).
15.
J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Wiley, New York, 1994), p. 513.
16.
I.
Miyagawa
and
W.
Gordi
,
J. Chem. Phys.
32
,
255
(
1960
).
17.
J. R.
Morton
and
A. J.
Horsfield
,
J. Chem. Phys.
35
,
1142
(
1961
).
18.
A.
Horsfield
,
J. R.
Morton
, and
D. H.
Whiffen
,
Mol. Phys.
5
,
115
(
1962
).
19.
I.
Miyagawa
and
K.
Itoh
,
J. Chem. Phys.
36
,
2157
(
1962
).
20.
J. W.
Sinclair
and
M. W.
Hanna
,
J. Phys. Chem.
71
,
84
(
1967
).
21.
S. A.
Dzuba
,
K. M.
Salikhov
, and
Yu. D.
Tsvetkov
,
Chem. Phys. Lett.
79
,
568
(
1981
).
22.
S.-i.
Kuroda
and
I.
Miyagawa
,
J. Chem. Phys.
76
,
3933
(
1982
).
23.
K.
Matsuki
and
I.
Miyagawa
,
J. Chem. Phys.
76
,
3945
(
1982
).
24.
M.
Brustolon
,
T.
Cassol
,
L.
Micheletti
, and
U.
Segre
,
Mol. Phys.
57
,
1005
(
1986
).
25.
K.
Nakagawa
,
S. S.
Eaton
, and
G. R.
Eaton
,
Appl. Radiat. Isot.
44
,
73
(
1993
).
26.
R.
Angelone
,
C.
Forte
, and
C.
Pinzino
,
J. Magn. Reson., Ser. A
101
,
16
(
1993
).
27.
M.
Brustolon
and
U.
Segre
,
Appl. Magn. Reson.
7
,
405
(
1994
).
28.
B. T.
Ghim
,
J-K.
Du
,
S.
Pfenninger
,
G. A.
Rinard
,
R. W.
Quine
,
S. S.
Eaton
, and
G. R.
Eaton
,
Appl. Radiat. Isot.
47
,
1235
(
1996
).
29.
B.
Rakvin
,
Appl. Radiat. Isot.
47
,
1251
(
1996
).
30.
E.
Sagstuen
,
E. O.
Hole
,
S. R.
Haugedal
, and
W. H.
Nelson
,
J. Phys. Chem. A
101
,
9763
(
1997
).
31.
B.
Rakvin
and
N.
Maltar-Strmečki
,
Spectrochim. Acta, Part A
56
,
399
(
2000
).
32.
B.
Rakvin
,
N.
Maltar-Strmečki
,
P.
Cevc
, and
D.
Arčon
,
J. Magn. Reson.
152
,
149
(
2001
).
33.
N.
Maltar-Strmečki
,
B.
Rakvin
,
P.
Cevc
, and
D.
Arčon
,
Appl. Magn. Reson.
22
,
551
(
2002
).
34.
J. R.
Harbridge
,
S. S.
Eaton
, and
G. R.
Eaton
,
J. Phys. Chem. A
107
,
598
(
2003
).
35.
A.
Barbon
,
M.
Brustolon
,
A. L.
Maniero
,
M.
Romanneli
, and
L. C.
Brunel
,
Phys. Chem. Chem. Phys.
1
,
4015
(
1999
).
36.
J. R.
Harbridge
,
S. S.
Eaton
, and
G. R.
Eaton
,
J. Magn. Reson.
164
,
44
(
2003
).
37.
A.
Schweiger
,
Angew. Chem., Int. Ed. Engl.
30
,
265
(
1981
).
38.
K. M. Salikhov and Yu. D. Tsvetkov, in Time Domain Electron Spin Resonance, edited by L. Kevan and R. N. Schwartz (Wiley, New York, 1976), Chap. 7.
39.
S. K.
Hoffmann
,
W.
Hilczer
,
J.
Goslar
,
M. M.
Massa
, and
R.
Calvo
,
J. Magn. Reson.
153
,
92
(
2001
).
40.
N. S.
Dalal
,
Adv. Magn. Reson.
10
,
119
(
1982
).
41.
R.
Destro
and
R. E.
Marsh
,
J. Phys. Chem.
92
,
966
(
1988
).
42.
I. M. Brown, in Time Domain Electron Spin Resonance, edited by L. Kevan and R. N. Schwartz (Wiley, New York, 1976), Chap. 6.
43.
S. K.
Hoffmann
,
J.
Goslar
,
W.
Hilczer
,
M. A.
Augustyniak-Jablokow
, and
S.
Kiczka
,
J. Magn. Reson.
153
,
56
(
2001
).
44.
A.
Zecevic
,
G. R.
Eaton
,
S. S.
Eaton
, and
M.
Lindgren
,
Mol. Phys.
95
,
1255
(
1998
).
45.
J. H.
Freed
,
J. Chem. Phys.
43
,
1710
(
1965
).
46.
A. R.
Sørnes
and
N. P.
Benetis
,
Chem. Phys.
226
,
151
(
1998
).
47.
E. R.
Andrew
,
W. S.
Hinshaw
,
M. G.
Hutchins
, and
R. O. I.
Sjöblom
,
Mol. Phys.
32
,
795
(
1976
).
48.
M. K. Bowman and L. Kevan, Time Domain Electron Spin Resonance, edited by L. Kevan and R. N. Schwartz (Wiley, New York, 1976), Chap. 3.
49.
M. K.
Bowman
and
L.
Kevan
,
J. Phys. Chem.
81
,
456
(
1977
).
50.
S. K.
Misra
,
Spectrochim. Acta
54
,
2257
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.