We present results about dissociative electron attachment (DEA) to gas-phase uracil (U) for incident electron energies between 0 and 14 eV using a crossed electron/molecule beam apparatus. The most abundant negative ion formed via DEA is where the resonance with the highest intensity appears at 1.01 eV. The anion yield of shows a number of peaks, which can be explained in part as being due to the formation of different isomers. Our results are compared with high level ab initio calculations using the G2MP2 method. There was no measurable amount of a parent ion We also report the occurrence of 12 other fragments produced by dissociative electron attachment to uracil but with lower cross sections than In addition we observed a parasitic contaminating process for conditions where uracil was introduced simultaneously with calibrant gases and that leads to a sharp peak in the cross section close to 0 eV. For and all other fragments we determined rough measures for the absolute partial cross section yielding in the case of a peak value of σ
Skip Nav Destination
Article navigation
8 April 2004
Research Article|
April 08 2004
Electron attachment to gas-phase uracil Available to Purchase
S. Denifl;
S. Denifl
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
S. Ptasińska;
S. Ptasińska
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
G. Hanel;
G. Hanel
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
B. Gstir;
B. Gstir
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
M. Probst;
M. Probst
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
P. Scheier;
P. Scheier
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
T. D. Märk
T. D. Märk
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
Search for other works by this author on:
S. Denifl
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
S. Ptasińska
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
G. Hanel
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
B. Gstir
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
M. Probst
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
P. Scheier
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
T. D. Märk
Institut für Ionenphysik, Leopold-Franzens Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
J. Chem. Phys. 120, 6557–6565 (2004)
Article history
Received:
October 07 2003
Accepted:
December 30 2003
Citation
S. Denifl, S. Ptasińska, G. Hanel, B. Gstir, M. Probst, P. Scheier, T. D. Märk; Electron attachment to gas-phase uracil. J. Chem. Phys. 8 April 2004; 120 (14): 6557–6565. https://doi.org/10.1063/1.1649724
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
Related Content
Effects of microsolvation on uracil and its radical anion: Uracil ∙ ( H 2 O ) n ( n = 1 – 5 )
J. Chem. Phys. (October 2006)
Electron attachment to 5-chloro uracil
J. Chem. Phys. (March 2003)
A study of the valence photoelectron spectrum of uracil and mixed water–uracil clusters
J. Chem. Phys. (March 2023)
Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H 2 O ices under astrophysical conditions
J. Chem. Phys. (September 2010)
Vibrational Feshbach resonances in uracil and thymine
J. Chem. Phys. (March 2006)