The influence of monomer structure on the thermodynamic properties of lattice model polymer blends is investigated through Monte Carlo computations. The model of lattice polymers with monomer structure has been used extensively in the context of the lattice cluster theory (LCT), a thermodynamic theory for polymer mixtures in the liquid state. The Monte Carlo computations provide the first unequivocal test of the accuracy of the LCT predictions for binary mixtures of polymers with structured monomers. Four types of monomer structures are analyzed, corresponding to to the monomers of polyethylene, polypropylene, polyethylethylene, and polyisobutylene (PIB). Most computations use chains with M=12 and 24 beads and the total volume fraction of the beads is φ=0.6. Both structurally symmetric and asymmetric blends are investigated. For the symmetric case, the predictions of the LCT for the energies of mixing and the liquid–liquid coexistence curves are in qualitative agreement with the Monte Carlo computations, except for the PIB/PIB symmetric blend. For structurally asymmetric blends, the LCT does not capture contributions to the energy of mixing arising solely from structural differences between the components. Computational estimates of the nonideal entropy of mixing indicate that the LCT also underestimates the entropic cost of mixing chains with different structures, thus explaining some discrepancies between the theoretical and the Monte Carlo liquid–liquid coexistence curves.

1.
P. J.
Flory
,
J. Chem. Phys.
9
,
660
(
1941
).
2.
M. L.
Huggins
,
J. Chem. Phys.
9
,
440
(
1941
).
3.
I. C.
Sanchez
,
Annu. Rev. Mater. Sci.
13
,
387
(
1983
).
4.
K. W.
Foreman
and
K. F.
Freed
,
Adv. Chem. Phys.
103
,
335
(
1998
), some typos should be corrected in formula (58): read N1(s) instead of Nl(s) and “−” instead of “+” in front of the last two terms, 1/Nl[⋯] and t=16C(t). Two corrections are needed in the term C(1), Eq. (93): Read 2u(r,{2,2})K2 instead of u(r,{2,2})K2 and u(r,{2,2})K[2−2K] instead of u(r,{2,2})K[1−2K]. The corrections to Eq. (93) are relevant only for semiflexible chains.
5.
D.
Buta
and
K. F.
Freed
,
J. Chem. Phys.
116
,
10959
(
2002
).
6.
D.
Buta
,
J. Chem. Phys.
119
,
2471
(
2003
).
7.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
8.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. E
64
,
056101
(
2001
).
9.
A. D.
Mackie
,
A. Z.
Panagiotopoulos
,
D.
Frenkel
, and
S. K.
Kumar
,
Europhys. Lett.
27
,
549
(
1994
).
10.
D.
Buta
,
K. F.
Freed
, and
I.
Szleifer
,
J. Chem. Phys.
112
,
6040
(
2000
).
11.
D.
Buta
,
K. F.
Freed
, and
I.
Szleifer
,
J. Chem. Phys.
114
,
1424
(
2001
).
12.
Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, New York, 1995), p. 15.
13.
H.
Flyvbjerg
and
H.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
14.
A.
Sariban
and
K.
Binder
,
J. Chem. Phys.
86
,
5859
(
1987
).
15.
A.
Sariban
and
K.
Binder
,
Macromolecules
21
,
711
(
1988
).
16.
Q.
Yan
,
R.
Faller
, and
J. J.
de Pablo
,
J. Chem. Phys.
116
,
8745
(
2002
).
17.
M. N.
Rosenbluth
and
A. W.
Rosenbluth
,
J. Chem. Phys.
23
,
356
(
1955
).
This content is only available via PDF.
You do not currently have access to this content.