We have investigated the insulator to metal transition in fluid deuterium using first principles simulations. Both density functional and quantum Monte Carlo calculations indicate that the electronic energy gap of the liquid vanishes at about ninefold compression and 3000 K. At these conditions the computed conductivity values are characteristic of a poor metal. These findings are consistent with those of recent shock wave experiments but the computed conductivity is larger than the measured value. From our ab initio results we conclude that the transition is driven by molecular dissociation rather than disorder and that both temperature and pressure play a key role in determining structural changes in the fluid.

1.
K. A.
Johnson
and
N. W.
Ashcroft
,
Nature (London)
403
,
632
(
2000
);
B.
Militzer
and
D. M.
Ceperley
,
Phys. Rev. Lett.
85
,
1890
(
2000
);
A.
Goncharov
,
E.
Gregoryanz
,
R.
Hemley
, and
H.-K.
Mao
,
PNAS
98
,
14234
(
2001
), and references therein.
2.
C.
Narayana
,
H.
Luo
,
J.
Orloff
, and
A. L.
Ruoff
,
Nature (London)
393
,
46
(
1998
).
3.
P.
Loubeyre
,
F.
Occelli
, and
R.
LeToullec
,
Nature (London)
416
,
613
(
2002
).
4.
S. T.
Weir
,
A. C.
Mitchell
, and
W. J.
Nellis
,
Phys. Rev. Lett.
76
,
1860
(
1996
).
5.
T. J.
Lenosky
,
J. D.
Kress
,
L. A.
Collins
, and
I.
Kwon
,
Phys. Rev. B
55
,
R11907
(
1997
);
T. J.
Lenosky
,
J. D.
Kress
,
L. A.
Collins
, and
I.
Kwon
,
J. Quant. Spectrosc. Radiat. Transf.
58
,
743
(
1997
).
6.
O.
Pfaffenzeller
and
D.
Hohl
,
J. Phys.: Condens. Matter
9
,
11023
(
1997
).
7.
L. A.
Collins
,
S. R.
Bickham
,
J. D.
Kress
,
S.
Mazevet
,
T. J.
Lenosky
,
N. J.
Troullier
, and
W.
Windl
,
Phys. Rev. B
63
,
184110
(
2001
);
G.
Galli
,
R. Q.
Hood
,
A. U.
Hazi
, and
F.
Gygi
,
Phys. Rev. B
61
,
909
(
2000
).
8.
F.
Gygi
and
G.
Galli
,
Phys. Rev. B
65
,
220102
(
2002
).
9.
S.
Scandolo
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
3051
(
2003
).
10.
S.
Bonev
,
B.
Militzer
, and
G.
Galli
,
Phys. Rev. B
69
,
014101
(
2004
).
11.
M.
Desjorlais
,
Phys. Rev. B
68
,
064204
(
2003
).
12.
M.
Ross
,
Phys. Rev. B
58
,
669
(
1998
).
13.
D.
Saumon
and
G.
Chabrier
,
Phys. Rev. A
46
,
2084
(
1992
).
14.
W. J.
Nellis
,
A. A.
Louis
, and
N. W.
Ashcroft
,
Philos. Trans. R. Soc. London, Ser. A
356
,
119
(
1998
).
15.
We carried out Car–Parrinello simulations at T=3000 and 10 000 K using the GP code 1.8.0 (F. Gygi, LLNL 1999–2002) and deuterium samples. The differences in zero-point energies between H and D are largely smeared out at 3000 and 10 000 K and the electronic properties of these two fluids should be identical at the same molar ρ-T conditions. The interaction between electrons and ions was described with a norm-conserving pseudopotential [
D.
Hamann
,
Phys. Rev. B
40
,
2980
(
1989
)] and only the Γ point was used to sample the supercell Brillouin zone (BZ). Single-particle electronic states were expanded in plane waves with a maximum kinetic energy cutoff of 75 Ry. We used a time step of 1 to 2 a.u. Samples were thermally equilibrated for about 2 ps and then statistics were accumulated for ≃10 ps.
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
17.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
18.
I.
Souza
,
R. M.
Martin
,
N.
Marzari
,
X.
Zhao
, and
D.
Vanderbilt
,
Phys. Rev. B
62
,
15505
(
2000
).
19.
A. J.
Williamson
,
R. Q.
Hood
, and
J. C.
Grossman
,
Phys. Rev. Lett.
87
,
246406
(
2001
).
20.
A. J.
Williamson
,
R. Q.
Hood
,
R. J.
Needs
, and
G.
Rajagopal
,
Phys. Rev. B
57
,
12140
(
1998
);
M. D.
Towler
,
R. Q.
Hood
, and
R. J.
Needs
,
Phys. Rev. B
62
,
2330
(
2000
).
21.
A. R.
Porter
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. B
64
,
035320
(
2001
).
22.
A. J.
Williamson
,
J. C.
Grossman
,
R. Q.
Hood
,
A.
Puzder
, and
G.
Galli
,
Phys. Rev. Lett.
89
,
196803
(
2002
).
23.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
24.
R. J. Needs et al., CASINO version 1.0 User’s Manual, University of Cambridge, Cambridge, 2000.
25.
A standard Slater–Jastrow form was used for the trial wave function. We computed the DMC electronic gap Eopt=E*−EGS, where EGS and E* are the total energies of the system in its ground and excited state, and E* is computed by replacing the HOMO with the LUMO in the Slater determinant of the trial wave function.
26.
A.
Puzder
,
A. J.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
Phys. Rev. Lett.
88
,
097401
(
2002
).
27.
E. Pollock, private communication.
28.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
);
D. A.
Greenwood
,
Proc. Phys. Soc. Jpn.
71
,
585
(
1958
).
29.
W. J.
Nellis
,
Phys. Rev. Lett.
89
,
165502
(
2002
).
30.
B.
Militzer
,
F.
Gygi
, and
G.
Galli
,
Phys. Rev. Lett.
91
,
265503
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.