The condensation of a supersaturated vapor enclosed in a finite system is considered. A phenomenological analysis reveals that the vapor is found to be stable at densities well above coexistence. The system size at which the supersaturated vapor condenses into a droplet is found to be governed by a typical length scale which depends on the coexistence densities, temperature and surface tension. When fluctuations are neglected, the chemical potential is seen to show a discontinuity at an effective spinodal point, where the inhomogeneous state becomes more stable than the homogeneous state. If fluctuations are taken into account, the transition is rounded, but the slope of the chemical potential versus density isotherm develops a discontinuity in the thermodynamic limit. In order to test the theoretical predictions, we perform a simulation study of droplet condensation for a Lennard-Jones fluid and obtain loops in the chemical potential versus density and pressure. By computing probability distributions for the cluster size, chemical potential, and internal energy, we confirm that the effective spinodal point may be identified with the occurrence of a first order phase transition, resulting in the condensation of a droplet. An accurate equation of state is employed in order to estimate the droplet size and the coexisting vapor density and good quantitative agreement with the simulation data is obtained. The results highlight the need of an accurate equation of state data for the Laplace equation to have predictive power.

1.
T. L.
Hill
,
J. Chem. Phys.
56
,
526
(
1952
).
2.
S. Ono and S. Kondo, Encyclopedia of Physics (Springer, Berlin, 1960), Vol. 10.
3.
J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1982).
4.
D.
Kashchiev
,
J. Chem. Phys.
118
,
1837
(
2003
).
5.
M.
Biskup
,
L.
Chayes
, and
R.
Kotecky
,
Europhys. Lett.
60
,
21
(
2002
).
6.
K.
Binder
,
Physica A
319
,
99
(
2003
).
7.
T.
Neuhaus
and
J. S.
Hager
,
J. Stat. Phys.
113
,
47
(
2003
).
8.
P.
Virnau
,
L.
MacDowell
,
M.
Müller
, and
K.
Binder
, cond-mat/0303642 (
2003
).
9.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
10.
P. R.
ten Wolde
and
D.
Frenkel
,
J. Chem. Phys.
109
,
9901
(
1998
).
11.
I.
Kusaka
and
D. W.
Oxtoby
,
J. Chem. Phys.
110
,
5249
(
1999
).
12.
B.
Chen
,
J. I.
Siepmann
,
K. J.
Oh
, and
M. L.
Klein
,
J. Chem. Phys.
115
,
10903
(
2001
).
13.
L. D.
Gelb
,
K. E.
Gubbins
,
R.
Radhakrishnan
, and
M.
Sliwinska-Bartkowiak
,
Rep. Prog. Phys.
62
,
1573
(
1999
).
14.
A. V.
Neimark
,
P. I.
Ravikovitch
, and
A.
Vishnyakov
,
J. Phys.: Condens. Matter
15
,
347
(
2002
).
15.
M.
Rao
,
B. J.
Berne
, and
M. H.
Kalos
,
J. Chem. Phys.
68
,
1325
(
1978
).
16.
K.
Binder
and
M. H.
Kalos
,
J. Stat. Phys.
22
,
363
(
1980
).
17.
A. J.
Yang
,
J. Chem. Phys.
79
,
6289
(
1983
).
18.
A. J.
Yang
,
J. Chem. Phys.
82
,
2082
(
1985
).
19.
H. Ulbricht, J. Schmelzer, R. Mahnke, and F. Schweitzer, Thermodynamics of Finite Systems and the Kinetics of First-Order Phase Transitions (Teubner, Leipzig, 1988).
20.
D. J.
Lee
,
M. M.
Telo da Gama
, and
K. E.
Gubbins
,
J. Chem. Phys.
85
,
490
(
1986
).
21.
M.
Pleimling
and
W.
Selke
,
J. Phys. A
33
,
L199
(
2000
).
22.
M.
Pleimling
and
A.
Hüller
,
J. Stat. Phys.
104
,
971
(
2001
).
23.
B. A.
Berg
and
T.
Neuhaus
,
Phys. Rev. Lett.
68
,
9
(
1992
).
24.
B. A.
Berg
,
U.
Hansmann
, and
T.
Neuhaus
,
Z. Phys. B: Condens. Matter
90
,
229
(
1993
).
25.
K.
Binder
,
Phys. Rev. A
25
,
1699
(
1982
).
26.
F. F. Abraham, Homogeneous Nucleation Theory (Academic, New York, 1974).
27.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
28.
M. E.
Fisher
,
Physics (Long Island City, N.Y.)
3
,
255
(
1967
).
29.
K.
Kaski
,
K.
Binder
, and
J. D.
Gunton
,
Phys. Rev. A
29
,
3996
(
1984
).
30.
S. M.
Thompson
,
K. E.
Gubbins
,
J. P. R. B.
Walton
,
R. A. R.
Chantry
, and
J. S.
Rowlinson
,
J. Chem. Phys.
81
,
530
(
1984
).
31.
L. G.
MacDowell
,
M.
Müller
,
C.
Vega
, and
K.
Binder
,
J. Chem. Phys.
113
,
419
(
2000
).
32.
Y.
Tang
and
B. C.-Y.
Lu
,
AIChE J.
43
,
2215
(
1997
), see also Ref. 33.
33.
Y.
Tang
and
B. C.-Y.
Lu
,
Fluid Phase Equilib.
190
,
149
(
2001
).
34.
F. G.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
35.
P. Virnau, dissertation, Johannes Gutenberg-Universiät, Mainz, 2003.
36.
P.
Virnau
and
M.
Müller
, cond-mat/0306678 (
2003
).
37.
C.
Borgs
and
R.
Kotecky
,
Phys. Rev. Lett.
68
,
1734
(
1992
).
38.
L. G.
MacDowell
,
J. Chem. Phys.
119
,
453
(
2003
).
39.
S. C.
Gay
,
E. J.
Smith
, and
A. D. J.
Haymet
,
J. Chem. Phys.
116
,
8876
(
2002
).
40.
A.
Imre
,
K.
Martinás
, and
L.
Rebelo
,
J. Non-Equil. Thermodyn.
23
,
351
(
1998
).
41.
M.
Müller
and
L. G.
MacDowell
,
Macromolecules
33
,
3902
(
2000
).
42.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
43.
A.
Oleinikova
,
I.
Brovchenko
,
A.
Geiger
, and
B.
Guillot
,
J. Chem. Phys.
117
,
3296
(
2002
).
44.
R.
Strey
,
P. E.
Wagner
, and
T.
Schmeling
,
J. Chem. Phys.
84
,
2325
(
1986
).
45.
C.
Hung
,
M. J.
Krasnopoler
, and
J. L.
Katz
,
J. Chem. Phys.
84
,
2325
(
1986
).
46.
V.
Talanquer
,
J. Chem. Phys.
106
,
9957
(
1997
).
47.
R.
McGraw
and
A.
Laaksonen
,
Phys. Rev. Lett.
76
,
2754
(
1996
).
48.
V. K.
Shen
and
P. G.
Debenedetti
,
J. Chem. Phys.
114
,
4149
(
2001
).
49.
V.
Romero-Rochı́n
and
J. K.
Percus
,
Phys. Rev. E
53
,
5130
(
1996
).
50.
R.
McGraw
and
A.
Laaksonen
,
J. Chem. Phys.
106
,
5284
(
1997
).
51.
M.
Biskup
,
L.
Chayes
, and
R.
Kotecky
,
Physica A
327
,
583
(
2003
).
52.
K.
Binder
,
Physica A
327
,
589
(
2003
).
53.
A higher order approximation would involve substitution of ρgc by ρ in the denominator of the first term. By employing Eq. (24), however, we ensure that the roots of Eq. (19) yield the (exact) extrema for this (approximate) free energy. This procedure is necessary because substitution of the approximate roots into the exact free energy yields physically absurd results (such as a higher free energy for the stable than for the unstable solution).
This content is only available via PDF.
You do not currently have access to this content.