We model the hybridization kinetics of surface attached DNA oligomers with solubilized targets. Using both master equation and rate equation formalisms, we show that, for surface coverages at which the surface immobilized molecules interact, barriers to penetration create a distribution of target molecule concentrations within the adsorbed layer. By approximately enumerating probe and target conformations, we estimate the probability of overlap between complementary probe and target regions as a function of probe density and chain length. In agreement with experiments, we find that as probe molecules interact more strongly, fewer nucleation sites become accessible and binding rates are diminished relative to those in solution. Nucleation sites near the grafted end of the probes are least accessible; thus targets which preferentially bind to this region show more drastic rate reductions than those that bind near the free end of the probe. The implications of these results for DNA-based biosensors are discussed.

1.
D. J.
Graves
,
Trends Biotechnol.
17
,
127
(
1999
).
2.
L. M.
Demers
,
C. A.
Mirkin
,
R. C.
Mucic
,
R. A. I.
Reynolds
,
R. L.
Letsinger
,
R.
Elghanian
, and
G.
Viswanadham
,
Anal. Chem.
72
,
5535
(
2000
).
3.
J.
Fritz
,
M. K.
Baller
,
H. P.
Lang
,
H.
Rothuizen
,
P.
Vettiger
,
E.
Meyer
,
H.-J.
Guntherodt
,
C.
Gerber
, and
J. K.
Gimzewski
,
Science
288
,
316
(
2000
).
4.
G.
Wu
,
H.
Ji
,
K.
Hansen
,
T.
Thundat
,
R.
Datar
,
R.
Cote
,
M. F.
Hagan
,
A. K.
Chakraborty
, and
A.
Majumdar
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
1560
(
2001
).
5.
D. I.
Stimpson
,
J. V.
Hoijer
,
W.
Hsieh
,
C.
Jou
,
J.
Gordon
,
T.
Theriault
,
R.
Gamble
, and
J. D.
Baldeschwieler
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
6379
(
1994
).
6.
J. J.
Storhoff
,
R.
Elghanian
,
R. C.
Mucic
,
C. A.
Mirkin
, and
R. L.
Letsinger
,
J. Am. Chem. Soc.
120
,
1959
(
1998
).
7.
K. A.
Peterlinz
,
R. M.
Georgiadis
,
T. M.
Herne
, and
M. J.
Tarlov
,
J. Am. Chem. Soc.
119
,
3401
(
1997
).
8.
K.
Hansen
,
H.
Ji
,
G.
Wu
,
R.
Datar
,
R.
Cote
,
A.
Majumdar
, and
T.
Thundat
,
Anal. Chem.
73
,
1567
(
2001
).
9.
A. W.
Peterson
,
R. J.
Heaton
, and
R. M.
Georgiadis
,
Nucleic Acids Res.
29
,
5163
(
2001
).
10.
M. R.
Henry
,
P. W.
Stevens
,
J.
Sun
, and
D. M.
Kelso
,
Anal. Biochem.
276
,
204
(
1999
).
11.
J.
Zeng
,
A.
Almadidy
,
J.
Watterson
, and
U. J.
Krull
,
Sens. Actuators A
90
,
68
(
2003
).
12.
Y.
Okahata
,
M.
Kawase
,
K.
Niikura
,
F.
Ohtake
,
H.
Furusawa
, and
Y.
Ebara
,
Anal. Chem.
70
,
1288
(
1998
).
13.
A. W.
Peterson
,
R. J.
Heaton
, and
R. M.
Georgiadis
,
J. Am. Chem. Soc.
122
,
7837
(
2000
).
14.
A. W.
Peterson
,
L. K.
Wolf
, and
R. M.
Georgiadis
,
J. Am. Chem. Soc.
124
,
14601
(
2002
).
15.
R. M.
Georgiadis
,
K. A.
Peterlinz
, and
A. W.
Peterson
,
J. Am. Chem. Soc.
122
,
3166
(
2000
).
16.
V.
Chan
,
D. J.
Graves
, and
S. E.
McKenzie
,
Biophys. J.
69
,
2243
(
1995
).
17.
D.
Erickson
,
D.
Li
, and
U. J.
Krull
,
Anal. Biochem.
317
,
186
(
2003
).
18.
M. F.
Hagan
,
A.
Majumdar
, and
A. K.
Chakraborty
,
J. Phys. Chem. B
106
,
10163
(
2002
).
19.
J. G.
Wetmur
and
N.
Davidson
,
J. Mol. Biol.
31
,
349
(
1968
).
20.
J. G.
Wetmur
,
Biopolymers
10
,
601
(
1971
).
21.
R. B.
Towery
,
N. C.
Fawcett
,
P.
Zhang
, and
J. A.
Evans
,
Biosens. Bioelectron.
16
,
1
(
2002
).
22.
P.
Schuck
,
Biophys. J.
70
,
1230
(
1995
).
23.
P.
Schuck
and
A. P.
Minton
,
Anal. Biochem.
57
,
262
(
1996
).
24.
D. R. Purvis, D. Pollard-Knight, and P. A. Lowe, in Commercial Biosensors, edited by G. Ramsay (Wiley-Interscience, New York, 1998), pp. 165–224.
25.
B.
Tinland
,
A.
Pleun
,
J.
Sturm
, and
G.
Weill
,
Macromolecules
30
,
5763
(
1997
).
26.
Experimental hybridization efficiencies, including recordings at later times than shown in Ref. 9, were provided by the authors.
27.
H. H.
Strey
,
V. A.
Parsegian
, and
R.
Podgornik
,
Phys. Rev. Lett.
78
,
895
(
1997
).
28.
H. H.
Strey
,
V. A.
Parsegian
, and
R.
Podgornik
,
Phys. Rev. E
59
,
999
(
1999
).
29.
J. G.
Wetmur
,
Crit. Rev. Biochem. Mol. Biol.
26
,
227
(
1991
).
30.
The Wetmur–Davidson equation is usually written for DNA concentrations in M phospate, in which case kaB∼LkN.
31.
S.
Misra
,
S.
Varanasi
, and
P. P.
Varanasi
,
Macromolecules
22
,
4173
(
1989
).
32.
S. T.
Milner
,
Macromolecules
25
,
5487
(
1992
).
33.
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
34.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986), Sec. 4.2.
35.
D.
Pörschke
and
M.
Eigen
,
J. Mol. Biol.
62
,
361
(
1971
).
36.
M. E.
Craig
,
D. M.
Crothers
, and
P.
Doty
,
J. Mol. Biol.
62
,
383
(
1971
).
37.
V. A. Bloomfield, D. M. Crothers, and I. J. Tinoco, Nucleic Acids: Structures, Properties, and Functions (University Science Books, Sausilito, CA, 2000).
38.
A.
Bar-Haim
and
J.
Klafter
,
J. Chem. Phys.
109
,
5187
(
1998
).
39.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
40.
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1963).
41.
C. S.
Peskin
,
G. M.
Odell
, and
G.
Oster
,
Biophys. J.
65
,
316
(
1993
).
42.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
43.
K. B. Froment and G. F. Bischoff, Chemical Reactor Analysis and Design (Wiley Series in Chemical Engineering, New York, 1979).
44.
Due to the high charge of DNA (2.8e/segment after counterion condensation) the assumption in Ref. 31 that chain ends are distributed throughout the brush is violated at low salt concentrations and high grafting densities. Consequently, the theory predicted unphysical brush heights for the results in Fig. 11 and for grafting densities higher than σ=0.03 in Fig. 7. Because the predicted rates are not sensitive to the overall brush height and there were only a few sets of experimental data to compare with, we included these results anyway.
45.
C. G.
Baumann
,
S. B.
Smith
,
V. A.
Bloomfield
, and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
6185
(
1997
).
46.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
,
Macromolecules
22
,
853
(
1989
).
47.
E.
Giudice
,
P.
Vrnai
, and
R.
Lavery
,
Phys. Chem. Chem. Phys.
2
,
673
(
2001
).
48.
E.
Giudice
,
P.
Vrnai
, and
R.
Lavery
,
Nucleic Acids Res.
31
,
1434
(
2003
).
49.
N. K.
Banavali
and
A. D. J.
MacKerrel
,
J. Mol. Biol.
319
,
141
(
2002
).
50.
N.
Huang
,
N. K.
Banavali
, and
A. D. J.
MacKerell
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
68
(
2003
).
51.
M. F.
Hagan
,
A. R.
Dinner
,
D.
Chandler
, and
A. K.
Chakraborty
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
13922
(
2003
).
52.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
,
Macromolecules
21
,
2610
(
1988
).
53.
G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vincent, Polymers at Interfaces (Chapman and Hall, London, 1993).
54.
P. G.
De Gennes
,
Macromolecules
13
,
1069
(
1980
).
55.
A. N.
Semenov
,
Zh. Eksp. Teor. Fiz.
88
,
1242
(
1985
).
56.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
(
1969
).
57.
G. S.
Manning
,
J. Chem. Phys.
51
,
3249
(
1969
).
58.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
59.
M.
Muthukumar
,
J. Chem. Phys.
105
,
5183
(
1996
).
60.
C. N.
Patra
and
A.
Yethiraj
,
J. Phys. Chem. B
103
,
6080
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.