The use of energy selected bases (ESB) with iterative diagonalization of the Hamiltonian matrix is described for vibrations of tetra-atomic systems. The performance of the method is tested by computing vibrational states of HOOH below 10 000 cm−1(1296 A+ symmetry states) and H2CO below 13 500 cm−1(729 A1 symmetry states). For iterative solutions, we tested both the implicitly restarted Lanczos method (IRLM) and the standard (nonreorthogonalizing) Lanczos approach. Comparison with other contracted basis approach as well as direct product grid representation shows superior performance of the ESB/IRLM approach. Of the two systems, H2CO is found to be more challenging than HOOH since it has much stronger couplings among vibrational modes, which leads to a drastically larger primitive basis set. For H2CO we also discuss some interesting behavior of the molecule in the high internal energy regime.

1.
P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC, Ottawa, 1998).
2.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
3.
J. K. G.
Watson
,
Mol. Phys.
19
,
465
(
1970
).
4.
N. C.
Handy
,
Mol. Phys.
61
,
207
(
1987
).
5.
F.
Gatti
,
C.
Iung
,
M.
Menou
,
Y.
Justum
,
A.
Nauts
, and
X.
Chapuisat
,
J. Chem. Phys.
108
,
8804
(
1998
).
6.
M.
Mladenović
,
J. Chem. Phys.
112
,
1070
(
2000
).
7.
S.
Carter
and
N. C.
Handy
,
Comput. Phys. Commun.
51
,
49
(
1988
).
8.
Z.
Bačić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
9.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
10.
S. E.
Choi
and
J. C.
Light
,
J. Chem. Phys.
97
,
7031
(
1992
).
11.
J. M.
Bowman
and
B.
Gazdy
,
J. Chem. Phys.
94
,
454
(
1991
).
12.
D.
Luckhaus
,
J. Chem. Phys.
113
,
1329
(
2000
).
13.
M.
Mladenović
,
Spectrochim. Acta, Part A
58
,
809
(
2002
).
14.
J. Cullum and R. A. Willoughby, Lanczos Algorithm for Large Symmetric Eigenvalue Computation (Birkhäuser, Boston, 1985).
15.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
16.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
101
,
8494
(
1994
).
17.
J.
Antikainen
,
R.
Friesner
, and
C.
Leforestier
,
J. Chem. Phys.
102
,
1270
(
1995
).
18.
X. T.
Wu
and
E. F.
Hayes
,
J. Chem. Phys.
107
,
2705
(
1997
).
19.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
117
,
6923
(
2002
).
20.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
21.
H.-S.
Lee
and
J. C.
Light
,
J. Chem. Phys.
118
,
3458
(
2003
).
22.
D. C.
Sorensen
,
SIAM J. Matrix Anal. Appl.
13
,
357
(
1992
).
23.
D. S. Watkins, Fundamentals of Matrix Computation (Wiley, New York, 2002).
24.
ARPACK is a collection of Fortran subroutines designed to solve large scale eigenvalue problems with implicitly restarted Arnoldi methods developed by R. B. Lehoucq, D. C. Sorensen, and C. Yang, 1997.
25.
ARPACK requires core memory available to save at least 2×Nev Lanczos vectors, where Nev is the number of eigenvalues to be calculated.
26.
M. J.
Bramley
and
N. C.
Handy
,
J. Chem. Phys.
98
,
1378
(
1993
).
27.
J.
Koput
,
S.
Carter
, and
N. C.
Handy
,
J. Chem. Phys.
115
,
8345
(
2001
).
28.
R.
Chen
,
G.
Ma
, and
H.
Guo
,
J. Chem. Phys.
114
,
4763
(
2001
).
29.
R.
Ribeiro
,
C.
Iung
, and
C.
Leforestier
,
Chem. Phys. Lett.
362
,
199
(
2002
).
30.
B.
Kuhn
,
T. R.
Rizzo
,
D.
Luckhaus
,
M.
Quack
, and
M. A.
Suhm
,
J. Chem. Phys.
111
,
2565
(
1999
).
31.
D. C.
Burleigh
,
A. B.
McCoy
, and
E. L.
Sibert
III
,
J. Chem. Phys.
104
,
480
(
1996
).
32.
R. J.
Bouwens
,
J. A.
Hammerschmidt
,
M. M.
Grzeskowiak
,
T. A.
Stegink
,
P. M.
Yorba
, and
W. F.
Polik
,
J. Chem. Phys.
104
,
454
(
1996
).
33.
G. C. Corey, J. W. Tromp, and D. Lemoine, in Numerical Grid Methods and Their Applications to Schrödinger’s Equation, edited by C. Cerjan (Kluwer, Dordrecht, 1992).
34.
H.-G.
Yu
and
J. T.
Muckerman
,
J. Mol. Spectrosc.
214
,
11
(
2002
).
35.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
36.
H.
Wei
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
97
,
3029
(
1992
).
37.
P. P.
Korambath
,
X. T.
Wu
, and
E. F.
Hayes
,
J. Phys. Chem.
100
,
6116
(
1996
).
38.
K.
Yagi
,
C.
Oyanagi
,
T.
Taketsugu
, and
K.
Hirao
,
J. Chem. Phys.
118
,
1653
(
2003
).
39.
T.
Yonehara
and
S.
Kato
,
J. Chem. Phys.
117
,
11131
(
2002
).
40.
S.
Carter
,
N. C.
Handy
, and
J.
Demaison
,
Mol. Phys.
90
,
729
(
1997
).
41.
J. M.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Mol. Spectrosc.
160
,
105
(
1993
).
42.
See EPAPS Document No. E-JCPSA6-120-016410 for the vibrational energies of A1 symmetry states of H2CO up to 13 500 cm−1.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
43.
A. B.
McCoy
,
D. C.
Burleigh
, and
E. L.
Sibert
,
J. Chem. Phys.
95
,
7449
(
1991
).
44.
M. S.
Child
and
L.
Halonen
,
Adv. Chem. Phys.
57
,
1
(
1984
).
45.
H.-S.
Lee
,
H.
Chen
, and
J. C.
Light
,
J. Chem. Phys.
119
,
4187
(
2003
).
46.
Z.
Bačić
,
R. M.
Whitnell
,
D.
Brown
, and
J. C.
Light
,
Comput. Phys. Commun.
51
,
35
(
1988
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.