Starting from the flux of particles in a Brownian dynamics simulation we derive boundary conditions, which allow us (i) to couple a Brownian dynamics calculation to a reservoir of particles of a given density, i.e., setting up constant density boundary conditions, and (ii) to build an interface between Brownian dynamics and a diffusional treatment of adjacent simulation volumes. With these algorithms it is sometimes possible to dramatically reduce the system size—and therefore the necessary resources—of multiparticle Brownian dynamics calculations. In this paper we give one-dimensional examples which illustrate potential applications and savings.

1.
A.
Einstein
,
Ann. Phys. (Leipzig)
17
,
549
(
1905
).
2.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
3.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Simul.
1
,
173
(
1988
).
4.
C.
Gorba
and
V.
Helms
,
Soft Materials
1
,
187
(
2003
).
5.
W.
Im
,
S.
Seefeld
, and
B.
Roux
,
Biophys. J.
79
,
788
(
2000
).
6.
C. Gorba, T. Geyer, and V. Helms (unpublished).
7.
J.
Schaff
,
C.
Fink
,
B.
Slepchenko
,
J.
Carson
, and
L.
Loew
,
Biophys. J.
73
,
1135
(
1997
).
8.
K.
Tai
,
S. D.
Bond
,
H. R.
MacMillan
et al.,
Biophys. J.
84
,
2234
(
2003
).
9.
J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science, Amsterdam, 1996).
10.
E. Jahnke and F. Emde, Tables of Functions (Dover, New York, 1945).
11.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1996).
12.
R. J.
Ellis
and
A. P.
Minton
,
Nature (London)
425
,
27
(
2003
).
13.
M.
Mezei
,
Mol. Phys.
40
,
901
(
1980
).
14.
R.
Walser
,
A. E.
Mark
, and
W. F.
van Gunsteren
,
Chem. Phys. Lett.
303
,
583
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.