In view of the rapid progress in experiments of the tunneling dynamics in the time domain, we develop a quasisemiclassical method that is aimed at a study of the proton-transfer dynamics in a large system such as tropolone and its interesting derivatives, to which not only full quantum mechanics, but even a standard semiclassical theory is never easy to apply. In our very tractable method for multidimensional systems, the tunneling paths are generated in terms of the generalized classical mechanics [K. Takatsuka and H. Ushiyama, Phys. Rev. A 51, 4353 (1995)], but the quantum phases arising from the action integral, the Maslov index, and the semicalssical amplitude factor as well in the semiclassical kernels are entirely neglected. This approach is called the quasisemiclassical method. One of the technical issues involved in the general semiclassical scheme is how to locate points from which a tunneling path emanates. Hence the studies of such tunneling points and the quasisemiclassical method should be examined collectively. We test several ways of determining the tunneling point, including those already proposed in the literature and a newly proposed one. It is shown numerically that the quasisemiclassical method with an appropriate choice of tunneling points reproduces the full quantum mechanical tunneling probability reasonably well. This case study indicates that the present conventional approach is promising to the study of large systems. The role of tunneling points in the initial process of tunneling is also discussed.

1.
Proton Transfer in Hydrogen-bonded Systems, edited by T. Bountis (Plenum Press, New York 1992).
2.
Hydrogen Transfer: Experiment and Theory, edited by H. H. Limbach and J. Manz [Ber. Bunsenges. Phys. Chem. 102, 289 (1998)].
3.
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
,
Adv. Chem. Phys.
88
,
1
(
1994
).
4.
K.
Nishi
and
H.
Sekiya
,
J. Chem. Phys.
109
,
1589
(
1998
);
K.
Nishi
,
H.
Sekiya
,
H.
Kawakami
,
A.
Mori
, and
Y.
Nishimura
,
J. Chem. Phys.
111
,
3961
(
1999
).
5.
C.
Kobayashi
,
K.
Iwashita
,
S.
Saito
, and
I.
Ohmine
,
J. Chem. Phys.
105
,
6358
(
1996
).
6.
H.
Ushiyama
and
K.
Takatsuka
,
J. Chem. Phys.
115
,
5903
(
2001
).
7.
Modern Methods for Multidimensional Dynamics Computations in Chemistry, edited by D. L. Thompson (World Scientific, Singapore, 1998).
8.
Computational Chemistry and Chemical Engineering, edited by G. Cisneros et al. (World Scientific, Singapore, 1997).
9.
J. Zeng and H. Zhang, Theory and Application of Quantum Molecular Dynamics (World Scientific, Berlin, 1999).
10.
Methods in Reaction Dynamics: Proceedings of the Mariapfarr Workshop, edited by W. Jakubetz, Lecture Notes in Chemistry, Vol. 77 (Springer, Berlin, 2001).
11.
B. A.
Waite
and
W. H.
Miller
,
J. Chem. Phys.
73
,
3713
(
1980
).
12.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
91
,
4026
(
1989
).
13.
Y. Guo and L. D. Thompson, in Modern Methods for Multidimensional Dynamics Computations in Chemistry (Ref. 7), p. 713, and references cited therein.
14.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
) and references therein.
15.
K.
Takatsuka
and
H.
Ushiyama
,
Phys. Rev. A
51
,
4353
(
1995
).
16.
H.
Ushiyama
and
K.
Takatsuka
,
J. Chem. Phys.
106
,
7023
(
1997
).
17.
K.
Takatsuka
,
H.
Ushiyama
, and
A.
Inoue-Ushiyama
,
Phys. Rep.
322
,
347
(
1999
).
18.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
97
,
27
(
1984
);
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
19.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1991
).
20.
G.
Campolieti
and
P.
Brumer
,
Phys. Rev. A
50
,
997
(
1994
).
21.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
22.
M. A.
Sepúlveda
and
F.
Grossmann
,
Adv. Chem. Phys.
96
,
191
(
1996
).
23.
K.
Takatsuka
and
A.
Inoue
,
Phys. Rev. Lett.
78
,
1404
(
1997
).
24.
K.
Hotta
and
K.
Takatsuka
,
J. Phys. A
36
,
4785
(
2003
).
25.
R.
Gelabert
,
X.
Giménez
,
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
2572
(
2001
).
26.
W. H.
Miller
,
J. Chem. Phys.
53
,
3578
(
1970
).
27.
V.
Guallar
,
V. S.
Batista
, and
W. H.
Miller
,
J. Chem. Phys.
113
,
9510
(
2000
).
28.
A. H.
Zewail
,
J. Phys. Chem. A
104
,
5660
(
2000
).
29.
K.
Fuke
,
H.
Yoshiuchi
, and
K.
Kaya
,
J. Phys. Chem.
88
,
5840
(
1984
);
K.
Fuke
and
K.
Kaya
,
J. Phys. Chem.
93
,
614
(
1989
);
A.
Douhal
,
S. K.
Kim
, and
A. H.
Zwail
,
Nature (London)
378
,
260
(
1995
);
T.
Fiebig
,
M.
Chachisvilis
,
M. M.
Manger
, and
A. H.
Zewail
,
J. Phys. Chem. A
103
,
7419
(
1999
);
S.
Takeuchi
and
T.
Tahara
,
J. Phys. Chem.
102
,
7740
(
1998
);
S.
Takeuchi
and
T.
Tahara
,
Chem. Phys. Lett.
228
,
1
(
1998
);
S.
Takeuchi
and
T.
Tahara
,
Chem. Phys. Lett.
347
,
108
(
2001
).
30.
H.
Ushiyama
and
K.
Takatsuka
,
J. Chem. Phys.
109
,
9664
(
1998
).
31.
K.
Giese
,
H.
Ushiyama
, and
O.
Kühn
,
Chem. Phys. Lett.
371
,
681
(
2003
).
32.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
33.
A.
Schmid
,
Ann. Phys. (N.Y.)
170
,
333
(
1986
).
34.
V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximations in Quantum Mechanics (Reidel, Dordrecht, 1981).
35.
R.
Littlejohn
,
J. Stat. Phys.
68
,
7
(
1992
).
36.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
);
M.
Page
and
J. W.
Mclver
, Jr.
,
J. Chem. Phys.
88
,
922
(
1988
).
37.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, Berlin, 1983);
G.
Benettin
,
L.
Galgani
, and
J. M.
Strelcyn
,
Phys. Rev. A
14
,
2338
(
1976
).
38.
H.
Ushiyama
,
Y.
Arasaki
, and
K.
Takatsuka
,
Chem. Phys. Lett.
346
,
169
(
2001
).
39.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
40.
H.
Yoshida
,
Phys. Lett. A
150
,
262
(
1990
);
T.
Takahashi
and
K.
Ikeda
,
J. Chem. Phys.
99
,
8680
(
1993
).
41.
H. Ushiyama and K. Takatsuka (unpublished).
This content is only available via PDF.
You do not currently have access to this content.