The benzene–Ar lowest energy triplet state T1 intermolecular potential energy surface is evaluated using coupled cluster methods and the aug-cc-pVDZ basis set extended with a set of 3s3p2d1f1g midbond functions. This surface is characterized by an absolute minimum of −392.5 cm−1, where the argon atom is located on the benzene C6 axis at a distance of 3.5153 Å, and has a general shape very close to the ground state S0 and the first singlet S1 excited state surfaces. Using the T1 potential, the intermolecular vibrational energy levels were evaluated and the results compared to those for the ground S0 and the excited S1 states. The calculated fundamental frequencies for the bending and the stretching modes are lower than those in the S1 state. The calculated data for the T1 state is expected to have the same accuracy as previously calculated data for the S1 state.

1.
H.
Koch
,
B.
Fernández
, and
O.
Christiansen
,
J. Chem. Phys.
108
,
2784
(
1998
).
2.
H.
Koch
,
B.
Fernández
, and
J.
Makarewicz
,
J. Chem. Phys.
111
,
198
(
1999
).
3.
B.
Fernández
,
H.
Koch
, and
J.
Makarewicz
,
J. Chem. Phys.
111
,
5922
(
1999
).
4.
See EPAPS Document No. E-JCPSA6-119-304333 for the coordinates of the grid points, the values of the ab initio interaction energies and the errors of the fitted analytic potential energy function.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
5.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M. Head
Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
6.
K.
Hald
,
P.
Jørgensen
,
O.
Christiansen
, and
H.
Koch
,
J. Chem. Phys.
116
,
5963
(
2002
).
7.
K.
Hald
,
C.
Hättig
, and
P.
Jørgensen
,
J. Chem. Phys.
113
,
7765
(
2000
).
8.
T. Helgaker, H. J. Aa. Jensen, P. Jørgensen et al., DALTON, an electronic structure program, release 1.2, 2001.
9.
Th.
Weber
,
A.
von Bargen
,
E.
Riedle
, and
H. J.
Neusser
,
J. Chem. Phys.
92
,
90
(
1990
).
10.
(a)
S. R.
Langhoff
,
E. R.
Davidson
, and
C. W.
Kern
,
J. Chem. Phys.
63
,
4800
(
1975
);
(b)
Y.
Osamura
,
Chem. Phys. Lett.
145
,
541
(
1988
);
(c)
W. J.
Buma
,
J. H.
van der Waals
, and
M. C.
van Hemert
,
J. Chem. Phys.
93
,
3733
(
1990
).
11.
R. J.
Sension
,
R. J.
Brudzynski
,
S.
Li
,
B. S.
Hudson
,
F.
Zerbetto
, and
M. Z.
Zgierski
,
J. Chem. Phys.
96
,
2617
(
1992
).
12.
Th.
Brupbacher
,
J.
Makarewicz
, and
A.
Bauder
,
J. Chem. Phys.
101
,
9736
(
1994
).
13.
J.
Makarewicz
and
A.
Bauder
,
Mol. Phys.
84
,
853
(
1995
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.