Using Positronium (Ps) atom as a fundamental probe that maps changes in the local electron density of the microenvironment and high resolution transmission electron microscopy, C60 aggregation in neat CS2 solvent is reported over a concentration range 0.02 to 2.16 g/dm3. Spontaneous formation of stable spherical C60 aggregates in the colloidal range (∼90–125 nm) was observed over a critical concentration range of 0.06–0.36 g/dm3, beyond which the clusters broke. Specific interactions of the Ps atom with the surrounding revealed the onset concentration for stable aggregate formation in this solvent to be 0.06 g/dm3. The solution phase C60 structure in the critical concentration range was analyzed to be a spherical fractal aggregate with a fractal dimension of 1.9 and the growth mode followed a diffusion limited cluster aggregation mechanism. At concentrations beyond 0.36 g/dm3, an entropy driven phase change was noticed leading to the formation of irregular, but oriented crystalline components. A microscopic diffusion model was applied to calculate the o-Ps lifetime density function and diffusion coefficients of o-Ps and the C60 aggregates in the solution. With randomly distributed C60 fractal clusters, the o-Ps density function resulted in a good agreement between the calculated and the experimental o-Ps lifetimes, revealing the diffusion coefficients of C60 fractal cluster and the o-Ps to be 2.27×10−6cm2/s and 25.1×10−5cm2/s respectively.

1.
Q.
Ying
,
J.
Marecek
, and
B.
Chu
,
J. Chem. Phys.
101
,
2665
(
1994
).
2.
V. N.
Bezmel’nitsyn
,
A. V.
Eletskii
, and
E. V. J.
Stepanov
,
J. Phys. Chem.
98
,
6665
(
1994
).
3.
Q.
Ying
,
J.
Marecek
, and
B.
Chu
,
Chem. Phys. Lett.
219
,
214
(
1994
).
4.
R. G.
Alargova
,
S.
Deluchi
, and
K.
Tsujii
,
J. Am. Chem. Soc.
123
,
10460
(
2001
).
5.
S.
Nath
,
H.
Pal
,
D. K.
Palit
,
A. V.
Sapre
, and
J. P.
Mittal
,
J. Phys. Chem. B
102
,
10158
(
1998
).
6.
L. A.
Bulavin
,
I. I.
Adamenko
,
V. M.
Yashchuk
,
T.
Ogul’chansky
,
Y. I.
Prylutskyy
,
S. S.
Durov
, and
P.
Scarff
,
J. Mol. Liq.
93
,
187
(
2001
).
7.
S.
Nath
,
H.
Pal
, and
A. V.
Sapre
,
Chem. Phys. Lett.
327
,
143
(
2000
).
8.
N. P.
Yevlampieva
,
Y. F.
Birulin
,
E. V.
Melenevskaja
,
V. N.
Zgonnik
, and
E. I.
Rjumtsev
,
Colloids Surf., A
209
,
167
(
2002
).
9.
R. S.
Ruoff
,
R.
Malhotra
, and
D. L.
Huestis
,
Nature (London)
361
,
140
(
1993
).
10.
Y-P.
Sun
and
C. E.
Bunker
,
Nature (London)
365
,
398
(
1993
).
11.
H. N.
Ghosh
,
A. V.
Sapre
, and
J. P.
Mittal
,
J. Phys. Chem.
100
,
9439
(
1996
).
12.
V. N. Bezmel’nitsyn, A. V. Eletskii, and E. V. J. Stepanov, in Progress in Fullerene Research, edited by H. Kuzmany (World Scientific, Singapore, 1994), p. 45.
13.
J. S.
Ahn
,
K.
Suzuki
,
Y.
Iwasa
,
N.
Otsuka
, and
T.
Mitani
,
J. Lumin.
76/77
,
201
(
1998
).
14.
A. D.
Bokare
and
A.
Patnaik
,
J. Phys. Chem. B
107
,
6079
(
2003
).
15.
P.
Kirkegaard
,
M.
Eldrup
,
E.
Mogensen
, and
N. Y.
Pedersen
,
Comput. Phys. Commun.
23
,
307
(
1989
).
16.
J.
Forsman
,
J. P.
Harrison
, and
A.
Rutenberg
,
Can. J. Chem.
65
,
767
(
1987
).
17.
J. H.
Lee
,
G.
Beaucage
,
S. E.
Pratsinis
, and
S.
Vemury
,
Langmuir
14
,
5751
(
1998
).
18.
C. M.
Sorensen
,
Aerosol Sci. Technol.
35
,
648
(
2001
).
19.
P.
Mukherjee
,
J. Phys. Chem.
76
,
565
(
1972
).
20.
C.
Cametti
,
P.
Codastefano
, and
P.
Tartaglia
,
Phys. Rev. A
36
,
4916
(
1987
).
21.
Z.
Zhou
and
B.
Chu
,
J. Colloid Interface Sci.
143
,
356
(
1991
).
22.
J. E.
Martin
,
Phys. Rev.
36
,
3415
(
1987
).
23.
P.
Meakin
,
Phys. Rev. A
27
,
2616
(
1983
).
24.
M.
Lattuada
,
H.
Wu
, and
M.
Morbidelli
,
Phys. Rev. E
64
,
061404
(
2001
).
25.
R. D.
Mountain
and
G. W.
Mulholland
,
Langmuir
4
,
1321
(
1988
).
26.
A.
Das
,
S.
Dhara
, and
A.
Patnaik
,
Phys. Rev. B
59
,
11069
(
1999
).
27.
N.
Asherie
,
A.
Lomakin
, and
G. B.
Benedek
,
Phys. Rev. Lett.
77
,
4832
(
1996
).
28.
M. Takata, Y. Kubota, M. Sakata, J. Harada, H. Saito, H. Shinohara, H. Nagashima, and Y. Ando, Presented at Physical Society of Japan, 1991 (unpublished).
29.
P. A.
Forsyth
,
S.
Marcedja
,
D. J.
Mitchell
, and
B. W.
Ninham
,
Adv. Colloid Interface Sci.
9
,
37
(
1978
).
30.
M.
Adams
,
Z.
Dogic
,
S. L.
Keller
, and
S.
Fraden
,
Nature (London)
393
,
349
(
1998
).
31.
M. F. F.
Marques
,
H. D.
Burrows
,
M. D.
Miguel
,
A. P.
Lima
,
C. L.
Gil
, and
G.
Duplatre
,
J. Phys. Chem.
100
,
7595
(
1996
).
32.
A.
Boussaha
,
B.
Djermouni
,
L. A.
Fucugauchi
, and
H. J.
Ache
,
J. Am. Chem. Soc.
102
,
4654
(
1980
).
33.
A.
Boussaha
and
H. J.
Ache
,
J. Phys. Chem.
85
,
1683
(
1981
).
34.
Y. C.
Jean
and
H. J.
Ache
,
J. Am. Chem. Soc.
99
,
7504
(
1977
).
35.
Y. C.
Jean
and
H. J.
Ache
,
J. Phys. Chem.
82
,
811
(
1978
).
36.
H. J. Ache, in Positron Annihilation, edited by P. G. Coleman, S. C. Sharma, L. Diana (North-Holland, Amsterdam, 1982), p. 773.
37.
Y. C.
Jean
and
H. J.
Ache
,
J. Am. Chem. Soc.
100
,
984
(
1979
).
38.
V. I.
Grafutin
and
E. P.
Prokopev
,
Phys. Usp.
45
,
59
(
2002
).
39.
A.
Boussaha
,
B.
Djermouni
,
L. A.
Fucugauchi
, and
H. J.
Ache
,
J. Am. Chem. Soc.
102
,
4654
(
1980
).
40.
A.
Boussaha
and
H. J.
Ache
,
J. Phys. Chem.
85
,
1683
(
1981
).
41.
S. K.
Das
and
B. N.
Ganguly
,
J. Radioanal. Nucl. Chem.
230
,
17
(
1998
).
42.
S.
Vass
,
J. Phys. Chem.
90
,
1099
(
1986
).
43.
W.
Brandt
and
R.
Paulin
,
Phys. Rev. Lett.
21
,
193
(
1968
).
44.
W.
Brandt
and
R.
Paulin
,
Phys. Rev. B
5
,
2430
(
1972
).
45.
S.
Vass
,
Z.
Kajcsos
, and
B.
Molnar
,
Chem. Phys. Lett.
118
,
105
(
1985
).
46.
A. D. Bokare and A. Patnaik (unpublished).
47.
V. N.
Bezmel’nitsyn
,
Phys. Usp.
41
,
1091
(
1998
).
48.
P.
Ruelle
,
A.
Farina-Cuendet
, and
U. W.
Kesselring
,
J. Am. Chem. Soc.
118
,
1777
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.