The present work addresses the question of how electron tunneling matrix elements can be quantitatively calculated. In particular, we demonstrate how to go beyond Pathways methods, which have been shown to be qualitatively appropriate to do such calculations. Utilizing a combination of molecular dynamics with semiempirical and ab initio (Hartree–Fock) quantum chemistry calculations, we quantify how the dynamics and quality of the electronic Hamiltonian affect the outcome of the tunneling matrix elements. We show that tunneling is dominated by either one or, at most, a few constructively interfering pathway tubes. Even when equilibrium structures have destructive interference, tunneling is dominated by structures reached by fluctuations, where this interference is destroyed. In this limit, when one or a few constructive pathway tubes dominate, properly selected semiempirical methods are sufficiently powerful to provide quantitative predictions of the tunneling matrix elements. This combined methodology allows us to investigate quite large protein complexes. Calculations involving the electron transfer processes in azurin are used to validate these conclusions.

1.
D. S. Bendall, Protein Electron Transfer (Bios Scientific, Oxford, 1996).
2.
W. A. Cramer and D. B. Knaff, Energy Transduction in Biological Membranes (Springer-Verlag, New York, 1990).
3.
J. J. Jortner and M. Bixon, Electron Transfer—From Isolated Molecules to Biomolecules (Wiley, New York, 1999).
4.
A.
Warshel
and
W. W.
Parson
,
Q. Rev. Biophys.
34
,
563
(
2001
).
5.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
);
R. A.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
6.
M. D.
Newton
,
Chem. Rev.
91
,
767
(
1991
).
7.
J. J.
Hopfield
,
Proc. Natl. Acad. Sci. U.S.A.
74
,
3840
(
1974
).
8.
J. J.
Jortner
,
J. Chem. Phys.
64
,
4860
(
1976
).
9.
D. N.
Beratan
,
J. N.
Betts
, and
J. N.
Onuchic
,
Science
252
,
1285
(
1991
).
10.
J. N.
Onuchic
,
D. N.
Beratan
,
J. R.
Winkler
, and
H. B.
Gray
,
Annu. Rev. Biophys. Biomol. Struct.
21
,
349
(
1992
).
11.
J. J.
Regan
and
J. N.
Onuchic
,
Adv. Chem. Phys.
107
,
497
(
1999
).
12.
J. N.
Gehlen
,
I.
Daizadeh
,
A. A.
Stuchebrukhov
, and
R. A.
Marcus
,
Inorg. Chim. Acta
243
,
271
(
1996
).
13.
P.
Siddarth
and
R. A.
Marcus
,
J. Phys. Chem.
97
,
2400
(
1993
).
14.
I. A.
Balabin
and
J. N.
Onuchic
,
J. Phys. Chem. B
102
,
7497
(
1998
).
15.
Q.
Xie
,
G.
Archontis
, and
S. S.
Skourtis
,
Chem. Phys. Lett.
312
,
237
(
1999
).
16.
A.
Okada
,
T.
Kakitani
, and
J.
Inoue
,
J. Phys. Chem.
99
,
2946
(
1995
).
17.
T.
Kawatsu
,
T.
Kakitani
, and
T.
Yamato
,
Inorg. Chim. Acta
300
,
862
(
2000
);
T.
Kawatsu
,
T.
Kakitani
, and
T.
Yamato
,
J. Phys. Chem. B
105
,
4424
(
2001
).
18.
T.
Kawatsu
,
T.
Kakitani
, and
T.
Yamato
,
J. Phys. Chem. B
106
,
11356
(
2002
).
19.
A.
Broo
and
S.
Larsson
,
Chem. Phys.
161
,
363
(
1992
).
20.
J.
Wolfgang
,
S. M.
Risser
,
S.
Priyadarshy
, and
D. N.
Beratan
,
J. Phys. Chem. B
101
,
2986
(
1997
).
21.
S. S.
Skourtis
,
J. J.
Regan
, and
J. N.
Onuchic
,
J. Phys. Chem.
98
,
3379
(
1994
).
22.
M. D.
Newton
,
J. Phys. Chem.
92
,
3049
(
1988
);
M. D.
Newton
,
J. Phys. Chem.
95
,
30
(
1991
).
23.
C.
Liang
and
M. D.
Newton
,
J. Phys. Chem.
96
,
2855
(
1992
).
24.
R. J.
Cave
,
D. V.
Baxter
,
W. A.
Goddard
III
, and
J. D.
Baldeschwieler
,
J. Chem. Phys.
87
,
926
(
1987
).
25.
S.
Priyadarshy
,
S. S.
Skourtis
,
S. M.
Risser
, and
D. N.
Beratan
,
J. Chem. Phys.
104
,
9473
(
1996
).
26.
I. V.
Kurnikov
and
D. N.
Beratan
,
J. Chem. Phys.
105
,
9561
(
1996
).
27.
J.
Kim
and
A.
Stuchebrukhov
,
J. Phys. Chem. B
104
,
8606
(
2000
).
28.
D. M.
Medvedev
,
J.
Daizadeh
, and
A. A.
Stuchebrukhov
,
J. Am. Chem. Soc.
122
,
6571
(
2000
).
29.
I. A.
Balabin
and
J. N.
Onuchic
,
Science
290
,
114
(
2000
).
30.
J. R.
Winkler
and
H. B.
Gray
,
JBIC, J. Biol. Inorg. Chem.
2
,
399
(
1997
).
31.
L. K.
Skov
,
T.
Pascher
,
J. R.
Winkler
, and
H. B.
Gray
,
J. Am. Chem. Soc.
120
,
1102
(
1998
).
32.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
33.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
34.
T. H. Dunning, Jr. and P. J. Hay, in Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 2.
35.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
284
(
1985
);
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
36.
R. E. M.
Siegbahn
,
Adv. Chem. Phys.
93
,
333
(
1996
).
37.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
38.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
,
J. Am. Chem. Soc.
102
,
939
(
1980
).
39.
E. N.
Baker
,
J. Mol. Biol.
203
,
1071
(
1988
).
40.
H.
Nar
,
A.
Messerschmidt
,
R.
Huber
,
M.
ver de Kamp
, and
G. W.
Canters
,
J. Mol. Biol.
218
,
427
(
1991
).
41.
R.
Langen
,
I.
Chang
,
J. P.
Germanas
,
J. H.
Richards
,
J. R.
Winkler
, and
H. B.
Gray
,
Science
268
,
1733
(
1995
).
42.
R.
Langen
,
J. L.
Colón
,
D. R.
Casimiro
,
T. B.
Karpishin
,
J. R.
Winkler
, and
H. B.
Gray
,
JBIC, J. Biol. Inorg. Chem.
1
,
221
(
1996
).
43.
A. A.
Stuchebrukhov
,
J. Chem. Phys.
104
,
8424
(
1996
);
A. A.
Stuchebrukhov
,
J. Chem. Phys.
105
,
10819
(
1996
);
A. A.
Stuchebrukhov
,
J. Chem. Phys.
108
,
8499
(
1998
).
44.
I.
Daizadeh
,
E. S.
Medvedev
, and
A. A.
Stuchebrukhov
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
3703
(
1997
).
45.
D. A. Case, D. A. Pearlman, J. W. Caldwell et al., computer code AMBER 6, University of California, San Francisco, 1999.
46.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
, Jr.
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
47.
J. R.
Winkler
,
A. J.
Di Bilio
,
N. A.
Farrow
,
J. H.
Richards
, and
H. B.
Gray
,
Pure Appl. Chem.
71
,
1753
(
1999
).
48.
S.
Larsson
,
J. Chem. Soc., Faraday Trans. 2
79
,
1375
(
1983
).
49.
M. L.
Jones
,
I. V.
Kurnikov
, and
D. N.
Beratan
,
J. Phys. Chem. A
106
,
2002
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.