We study the equilibrium swelling degrees of an amphiphilic microgel which consists of two different types of constituents: hydrophobic (H) and hydrophilic (P) monomers. Using Flory-type theories, scaling arguments, and variational calculations, we investigate the influence of the number of cross links and cross-linking types on the equilibrium swelling behavior. We show that amphiphilic microgels exhibit discrete swelling degrees which are more pronounced than for homopolymer networks as the fraction of hydrophobic components in the gel changes. The heterogeneous cross links between different types of monomers prevent a complete phase separation and stabilize the gel at relatively high fraction of H monomers. Disorder in the arrangement of the monomers as well as the cross-linking positions is treated in the framework of the variational principle. The method developed here is also applied for designed networks which display well-defined conformational transitions. Such macrogels can be used for drug loading or release under specific environments. We provide scaling results for specifically constructed networks that are confirmed by our variational theory.

1.
K.
Lee
,
J.
Rowley
,
P.
Eiselt
,
E.
Moy
,
K.
Bouhadir
, and
D.
Mooney
,
Macromolecules
33
,
4291
(
2000
).
2.
A.
Abusafieh
,
R.
Gobran
, and
S. R.
Kalidindi
,
J. Appl. Polym. Sci.
63
,
75
(
1997
).
3.
A.
Aggeli
,
M.
Bell
,
N.
Boden
,
J. N.
Keen
,
P. F.
Knowles
,
T. C. B.
McLeish
,
M.
Pitkeathly
, and
S. E.
Radford
,
Nature (London)
386
,
259
(
1997
).
4.
L.
Bromberg
,
M.
Temchenko
, and
T. A.
Hatton
,
Langmuir
18
,
4944
(
2002
).
5.
A. K.
Ho
,
L. E.
Bromberg
,
P. D. T.
Huibers
,
A. J.
O’Connor
,
J. M.
Perera
,
G. W.
Stevens
, and
T. A.
Hatton
,
Langmuir
18
,
3005
(
2002
).
6.
D.
Thirumalai
,
V.
Ashwin
, and
J. K.
Bhattacharjee
,
Phys. Rev. Lett.
77
,
5385
(
1996
).
7.
C. J. Camacho (unpublished).
8.
L. H. Sperling, Interpenetrating Polymer Networks and Related Materials (Plenum, London, 1981).
9.
L. H. Sperling, An Introduction to Polymeric Multicomponent Materials (Wiley, New York, 1997).
10.
V.
Abetz
,
G. C.
Meyer
,
A.
Mathis
,
C.
Picot
, and
J. M.
Widmaier
,
Polym. Mater. Sci. Eng.
74
,
131
(
1996
).
11.
G.
Allen
,
J.
Burgess
,
S. F.
Edwards
, and
D. J.
Walsh
,
Proc. R. Soc. London, Ser. A
334
,
453
(
1973
);
G.
Allen
,
J.
Burgess
,
S. F.
Edwards
, and
D. J.
Walsh
,
Proc. R. Soc. London, Ser. A
334
,
465
(
1973
);
G.
Allen
,
J.
Burgess
,
S. F.
Edwards
, and
D. J.
Walsh
,
Proc. R. Soc. London, Ser. A
334
,
477
(
1973
).
12.
W.
Bremser
,
M.
Antonietti
, and
M.
Schmidt
,
Macromolecules
23
,
3796
(
1990
).
13.
GS considered the symmetric case, i.e., vAA=vBB.
14.
L.
Gutman
and
E.
Shakhnovich
,
J. Chem. Phys.
109
,
2947
(
1998
).
15.
L.
Gutman
and
E.
Shakhnovich
,
Chem. Phys. Lett.
303
,
355
(
1999
).
16.
L.
Gutman
and
E.
Shakhnovich
,
J. Chem. Phys.
114
,
10968
(
2001
).
17.
M.
Vamvakaki
and
C.
Patrickios
,
J. Phys. Chem. B
105
,
4979
(
2001
).
18.
P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).
19.
T.
Vilgis
,
Prog. Colloid Polym. Sci.
90
,
1
(
1992
).
20.
M.
Annaka
and
T.
Tanaka
,
Nature (London)
355
,
430
(
1992
).
21.
M.
Annaka
,
D.
Berling
,
J.
Robert
, and
T.
Tanaka
,
Macromolecules
26
,
3234
(
1993
).
22.
J. D.
Bryngelson
and
D.
Thirumalai
,
Phys. Rev. Lett.
76
,
542
(
1996
).
23.
M. P.
Solf
and
T. A.
Vilgis
,
J. Phys. I
6
,
1451
(
1996
).
24.
Y.
Kantor
and
M.
Kardar
,
Phys. Rev. E
54
,
5263
(
1996
).
25.
N.-K.
Lee
and
T. A.
Vilgis
,
Europhys. Lett.
57
,
817
(
2002
).
26.
N.-K.
Lee
and
T. A.
Vilgis
,
Eur. Phys. J. B
28
,
451
(
2002
).
27.
N.-K.
Lee
,
A.
Johner
, and
T. A.
Vilgis
,
Macromolecules
35
,
6043
(
2002
).
28.
J.-P.
Bouchaud
,
M.
Mezard
,
G.
Parisi
, and
J.-S.
Yedida
,
J. Phys. A
24
,
L1025
(
1991
).
29.
J.
des Cloizeaux
,
J. Phys. (Paris)
31
,
715
(
1970
).
30.
B.
Jönsson
,
C.
Peterson
, and
B.
Söderberg
,
Phys. Rev. Lett.
71
,
376
(
1993
).
31.
G.
Migliorini
,
N.-K.
Lee
,
V.
Rostiashvili
, and
T. A.
Vilgis
,
Eur. Phys. J. E
6
,
259
(
2001
).
32.
R. R.
Netz
and
H.
Orland
,
Eur. Phys. J. B
8
,
81
(
1999
).
33.
L.
Leibler
,
H.
Orland
, and
J.
Wheeler
,
J. Chem. Phys.
79
,
3550
(
1983
).
34.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
35.
S.
Obukhov
,
M.
Rubinstein
, and
R.
Colby
,
Macromolecules
27
,
3191
(
1994
).
36.
S.
Panyukov
and
Y.
Rabin
,
Phys. Rep.
269
,
1
(
1996
).
37.
M.
Pütz
,
K.
Kremer
, and
R.
Everaers
,
Phys. Rev. Lett.
84
,
298
(
2000
).
38.
S. Obukhov (private communication, 2002).
39.
M.
Solf
and
T.
Vilgis
,
J. Phys. A
28
,
6655
(
1995
).
40.
P.
Goldbart
and
A.
Zippelius
,
Phys. Rev. Lett.
71
,
2256
(
1993
).
41.
P.
Goldbart
and
A.
Zippelius
,
Europhys. Lett.
28
,
519
(
1994
).
42.
R. T.
Deam
and
S. F.
Edwards
,
Proc. Trans. R. Soc. London A
280
,
317
(
1976
).
43.
N.-K.
Lee
and
T. A.
Vilgis
,
Phys. Rev. E
67
,
050901
(R) (
2003
).
44.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Clarendon Press, Oxford, 1986).
45.
S. P.
Obukhov
,
J. Phys. A
19
,
3655
(
1986
).
46.
C.
Sfatos
,
A. M.
Gutin
, and
E.
Shakhnovich
,
Phys. Rev. E
48
,
465
(
1993
).
47.
S.
Ramanathan
and
E.
Shakhnovich
,
Phys. Rev. E
50
,
1303
(
1994
).
48.
A. Y. Grosberg and A. Khokhlov, Statistical Physics of Macromolecules (AIP, New York, 1994).
This content is only available via PDF.
You do not currently have access to this content.