We present computer simulations of long, thin, hard spherocylinders in a narrow planar slit. We observe a transition from the isotropic to a nematic phase with quasi-long-range orientational order upon increasing the density. This phase transition is intrinsically two-dimensional and of the Kosterlitz–Thouless type. The effective two-dimensional density at which this transition occurs increases with plate separation. We qualitatively compare some of our results with experiments where microtubules are confined in a thin slit, which gave the original inspiration for this work.

1.
F.
Gittes
,
B.
Mickey
,
J.
Nettleton
, and
J.
Howard
,
J. Cell Biol.
120
,
923
(
1993
).
2.
D.
Frenkel
and
R.
Eppenga
,
Phys. Rev. A
31
,
1776
(
1985
).
3.
M. A.
Bates
and
D.
Frenkel
,
J. Chem. Phys.
112
,
10034
(
2000
).
4.
J. M.
Kosterlitz
and
D.
Thouless
,
J. Phys. C
6
,
1181
(
1973
).
5.
J.
Dzubiella
,
M.
Schmidt
, and
H.
Löwen
,
Phys. Rev. E
62
,
5081
(
2000
).
6.
P.
van der Schoot
,
J. Chem. Phys.
106
,
2355
(
1997
).
7.
M.
Schmidt
and
H.
Löwen
,
Phys. Rev. Lett.
76
,
4552
(
1996
).
8.
A.
Poniewierski
,
Phys. Rev. E
47
,
3396
(
1993
).
9.
R.
van Roij
,
M.
Dijkstra
, and
R.
Evans
,
Europhys. Lett.
49
,
350
(
2000
).
10.
Z. Y.
Chen
and
S. M.
Cui
,
Phys. Rev. E
52
,
3876
(
1995
).
11.
R.
van Roij
,
M.
Dijkstra
, and
R.
Evans
,
J. Chem. Phys.
113
,
7689
(
2000
).
12.
L.
Harnau
and
S.
Dietrich
,
Phys. Rev. E
66
,
051702
(
2002
).
13.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. E
63
,
051703
(
2001
).
14.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2002), p. 111.
15.
A.
Desai
and
M.
Mitchison
,
Annu. Rev. Cell Dev. Biol.
13
,
83
(
1997
).
16.
M. Cosentino Lagomarsino and M. Dogterom (unpublished).
This content is only available via PDF.
You do not currently have access to this content.