The interaction energies of the dimethylsulfide–methanol (I) and dimethylthiocarbonyl–methanol (II) complexes are calculated as a function of the SH–O distances at various levels of theory and compared to those of their oxygen analogs. At the coupled cluster level the binding energy of (I) is −5.46 kcal/mol, only slightly smaller than the hydrogen bond energy of −5.97 kcal/mol for the corresponding oxygen analog, i.e., the dimethylether–methanol complex. It is also considerably larger than for dimethylether–methylthiol, where S and O of the parent complex are interchanged. Density functional theory is unable to describe these weak interactions properly. Choosing second-order Møller–Plesset perturbation theory, the interaction potential surfaces of both complexes with respect to the three relevant intermolecular coordinates are compared. The interactions in the hydrogen bonds involving sulfur are classified by Morokuma, atoms-in-molecules, and natural bond orbital analyses.

1.
S. Scheiner, Hydrogen Bonding: A theoretical perspective (Oxford University Press, Oxford, 1997).
2.
G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Vol. 9 of Monographs on Crystallography (International Union of Crystallography, Oxford University Press, New York, 1999).
3.
B. P.
Klaholz
,
A.
Mitschler
, and
D.
Moras
,
J. Mol. Biol.
302
,
155
(
2000
).
4.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
5.
K. N.
Kirschner
and
R. J.
Woods
,
J. Phys. Chem. A
105
,
4150
(
2001
).
6.
A.
Serrallach
,
R.
Meyer
, and
H. H.
Günthard
,
J. Mol. Spectrosc.
52
,
94
(
1974
).
7.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
8.
S. Huzinaga, Approximate Atomic Functions (University of Alberta, Canada, 1971), Vols. I and II.
9.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
10.
R.
Ahlrichs
,
F.
Keil
,
H.
Lischka
,
W.
Kutzelnigg
, and
V.
Staemmler
,
J. Chem. Phys.
63
,
455
(
1975
).
11.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
12.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
13.
J. A.
Ippolito
,
R. S.
Alexander
, and
D. W.
Christianson
,
J. Mol. Biol.
215
,
457
(
1990
).
14.
R.
Ahlrichs
and
P.
Scharf
,
Adv. Chem. Phys.
67
,
501
(
1987
).
15.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
16.
R.
Fink
and
V.
Staemmler
,
Theor. Chim. Acta
87
,
129
(
1993
).
17.
K. Andersson et al., Computer code MOLCAS, version 5, Lund University, Sweden, 2000.
18.
NWCHEM, a computational chemistry package for parallel computers, version 4.1, High Performance Computational Chemistry Group, Pacific Northwest National Laboratory, Richland, WA, 2002.
19.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
20.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1998
).
21.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
).
22.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
,
P.
Jorgensen
, and
P. R.
Taylor
,
J. Chem. Phys.
111
,
9157
(
1999
).
23.
G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991).
24.
S.
Tsuzuki
,
T.
Uchimaru
,
K.
Matsumura
,
M.
Mikami
, and
K.
Tanabe
,
J. Chem. Phys.
110
,
11906
(
1999
).
25.
J. R.
Goebel
,
B. S.
Ault
, and
J. E. D.
Bene
,
J. Phys. Chem. A
105
,
11365
(
2001
).
26.
G. D.
Markham
and
C. W.
Bock
,
J. Phys. Chem.
99
,
10118
(
1995
).
27.
T. A.
Halgren
,
J. Comput. Chem.
17
,
520
(
1996
).
28.
P. R.
Rablen
,
J. W.
Lockmann
, and
W. L.
Jorgensen
,
J. Phys. Chem. A
102
,
3782
(
1998
).
29.
M.
Reiher
,
D.
Sellmann
, and
B. A.
Hess
,
Theor. Chem. Acc.
106
,
379
(
2001
).
30.
J. A.
Platts
,
S. T.
Howard
, and
B. R. F.
Bracke
,
J. Am. Chem. Soc.
118
,
2726
(
1996
).
31.
R. F. W.
Bader
,
Chem. Rev.
91
,
893
(
1991
).
32.
R. F. W. Bader, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. S. Schaefer III, and P. R. Schreiner (Wiley, Chichester, UK, 1998), Vol. 1, pp. 64–86.
33.
G. L.
Sosa
,
N. M.
Peruchena
,
R. H.
Contreras
, and
E. A.
Castro
,
J. Mol. Spectrosc.
577
,
219
(
2002
).
34.
P. L. A.
Popelier
and
R. F. W.
Bader
,
Chem. Phys. Lett.
189
,
542
(
1992
).
35.
U.
Koch
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
36.
M. T.
Caroll
and
R. F. W.
Bader
,
Mol. Phys.
65
,
695
(
1988
).
37.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
38.
W.
Chen
and
M. S.
Gordon
,
J. Phys. Chem.
100
,
14316
(
1996
).
39.
M. W.
Schmidt
et al.,
J. Comput. Chem.
14
,
1347
(
1993
).
40.
F. Weinhold, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, UK, 1998), Vol. 3, pp. 1792–1811.
41.
E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, Computer code NBO 4.M, Theoretical Chemistry Insititute, University of Wisconsin, Madison, 1999.
42.
F.
de Proft
,
C.
van Alsenoy
,
A.
Peeters
,
W.
Langenaeker
, and
P.
Geerlings
,
J. Comput. Chem.
23
,
1198
(
2002
).
43.
S. S. C.
Ammal
and
P.
Venuvanalingam
,
J. Phys. Chem. A
104
,
10859
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.