Nonhomogeneous broadening of phosphorescence lines and microwave signals in optical detection of magnetic resonance (ODMR) has been calculated using multiconfigurational self-consistent field wave functions and the polarized continuum model. The solvent effects on the zero-field splitting (ZFS) parameters in the low-lying triplet states of aza-aromatic molecules are found to be linearly dependent on the solvent-induced shifts in the phosphorescence frequency in agreement with experimental data. The main contribution to the ZFS originates in the dipolar interaction of the two electron spins, the spin–spin coupling. The spin–orbit coupling (SOC) contribution to the ZFS parameter is much larger for the 3* state of pyrazine compared to the 3ππ* states of quinoline. The second-order SOC contribution to the splitting of the 3* state in the pyrazine molecule does not show any appreciable dependence on the dielectric constant of the solvent. This raises doubts about earlier theories for explaining the inhomogeneous broadening in triplet-state spectra based exclusively on the SOC-induced mixing of the singlet and triplet states. We complete the interpretation of the ODMR spectrum of pyrazine by calculating the hyperfine coupling (HFC) tensors in the lowest triplet state using the UB3LYP hybrid functional. An appreciable solvent-induced rotation of the anisotropic HFC tensor axes has been obtained for the 3* state of pyrazine, in particular for 13C and 14N nuclei. This produces additional nonhomogeneous broadening not only in electron–nuclear double resonance spectra, but also in electron paramagnetic resonance signals because the anisotropic HFC perturbation results in an intensity redistribution among the magnetic transitions between the spin sublevels. A small in-plane rotation of the ZFS tensor axes upon solvation has been predicted for quinoline. Rotation of the magnetic axes induced by the interaction with isotropic solvents can provide a new mechanism for spin-lattice relaxation in the triplet state.

1.
M.
Sharnoff
,
J. Chem. Phys.
46
,
3263
(
1967
).
2.
M. El-Sayed, in MTP International Review of Science, Spectroscopy, edited by A. Ramsey and D. Ramsey (Butterworth, London, 1972), p. 119.
3.
A.
Kwiram
, MTP Int. Rev. Sci. Phys. Chem. 4, 271 (1972).
4.
M.
Schwoerer
and
H.
Sixl
,
Chem. Phys. Lett.
2
,
14
(
1968
).
5.
J.
Schmidt
and
J.
van der Waals
,
Chem. Phys. Lett.
3
,
546
(
1969
).
6.
J.
Schmidt
,
D.
Antheunis
, and
J.
van der Waals
,
Mol. Phys.
22
,
1
(
1971
).
7.
Y.
Serebrennikov
and
B.
Minaev
,
Chem. Phys.
114
,
359
(
1987
).
8.
Y.
Serebrennikov
,
B.
Minaev
, and
R.
Mukhin
,
Zh. Fiz. Khim.
63
,
730
(
1989
).
9.
C.
Hutchison
and
B.
Mangum
,
J. Chem. Phys.
32
,
1261
(
1960
).
10.
S.
Boorstein
and
M.
Gouterman
,
J. Chem. Phys.
39
,
2443
(
1963
).
11.
B. F. Minaev, Ph.D. dissertation, Tomsk State University, 1973 (in Russian).
12.
B.
Minaev
,
Fiz. Mol., Naukova Dumka, Kiev
7
,
34
(
1979
).
13.
J.
Lemaistre
and
A.
Zewail
,
Chem. Phys. Lett.
68
,
302
(
1979
).
14.
E.
Shpol’skii
,
Sov. Phys. Usp.
6
,
411
(
1963
).
15.
L.
Cheng
and
A.
Kwiram
,
Chem. Phys. Lett.
4
,
457
(
1969
).
16.
J.
von Schutz
,
J.
Zuclich
, and
A.
Maki
,
J. Am. Chem. Soc.
96
,
714
(
1974
).
17.
J.
van Egmond
,
B.
Kohler
, and
I.
Chan
,
Chem. Phys. Lett.
34
,
423
(
1975
).
18.
A.
Kwiram
,
J.
Ross
, and
D.
Deranleau
,
Chem. Phys. Lett.
54
,
506
(
1978
).
19.
S.
Clark
and
D.
Tinti
,
Chem. Phys.
51
,
17
(
1980
).
20.
R.
Williamson
and
A.
Kwiram
,
J. Chem. Phys.
88
,
6092
(
1988
).
21.
T.
Alfredson
and
A.
Maki
,
Biochemistry
30
,
9665
(
1991
).
22.
G.
Gradle
,
J.
Friedrich
, and
B.
Kohler
,
J. Chem. Phys.
84
,
2079
(
1986
).
23.
G.
Gradle
and
J.
Friedrich
,
Chem. Phys. Lett.
114
,
543
(
1985
).
24.
B. Minaev, O. Loboda, O. Vahtras, K. Ruud, and H. Ågren, Theor. Chem. Acc. (to be published).
25.
R.
Cammi
and
J.
Tomasi
,
J. Comput. Chem.
16
,
1449
(
1995
).
26.
O.
Vahtras
,
B.
Minaev
,
O.
Loboda
,
H.
Ågren
, and
K.
Ruud
,
Chem. Phys.
279
,
133
(
2002
).
27.
T. Helgaker, H. J. A. Jensen, P. Jørgensen et al., DALTON 1.2, see http://www.kjemi.uio.no/software/dalton/dalton.html (1997).
28.
B. Schimmelpfennig, AMFI, An Atomic Mean-Field Spin–Orbit Integral Program (Stockholm University, Stockholm, Sweden, 1996).
29.
K. Andersson, M. P. Fülscher, G. Karlström et al., MOLCASVersion 3, Dept. of Theor. Chem., Chem. Center, Univ. Of Lund, P.O.B. 124, S-221 00 Lund, Sweden, 1994.
30.
R.
Cammi
,
L.
Frediani
,
B.
Mennucci
,
J.
Tomasi
,
K.
Ruud
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
117
,
13
(
2002
).
31.
S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice-Hall, Engelwood Cliffs, NJ, 1969).
32.
J.
Ellenbogen
,
D.
Feller
, and
E.
Davidson
,
J. Phys. Chem.
86
,
1583
(
1982
).
33.
M.
Donckers
,
A.
Schwencke
,
E.
Groenen
, and
J.
Schmidt
,
J. Chem. Phys.
97
,
110
(
1992
).
34.
V.
Bakken
and
T.
Helgaker
,
J. Chem. Phys.
117
,
9160
(
2002
).
35.
R. Cammi, L. Frediani, K. Ruud, B. Mennucci, and J. Tomasi (unpublished).
36.
L. Frediani, R. Cammi, K. Ruud, B. Mennucci, and J. Tomasi (unpublished).
37.
W. R.
Wadt
,
W. A.
Goddard
III
, and
T. H.
Dunning
,
J. Chem. Phys.
65
,
438
(
1976
).
38.
T.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
39.
K. Andersson, M. Barysz, A. Bernhardsson et al., MOLCAS Version 5, Lund University, Sweden, 2000.
40.
A.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
41.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
42.
V. Barone, in Recent Advances in Density Functional Methods (Part 1), edited by D. P. Chong (World Scientific, Singapore, 1995), p. 287.
43.
S.
Miertus
and
J.
Tomasi
,
Chem. Phys.
65
,
239
(
1982
).
44.
S.
Miertus
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
(
1981
).
45.
H.
Ågren
,
O.
Vahtras
, and
B.
Minaev
,
Adv. Quantum Chem.
27
,
71
(
1996
).
46.
A.
Komura
,
K.
Uchida
,
M.
Yagi
, and
J.
Higuchi
,
J. Photochem. Photobiol., A
42
,
293
(
1988
).
47.
S.
Clark
and
D.
Tinti
,
Chem. Phys.
51
,
17
(
1980
).
48.
B.
Minaev
and
Y.
Serebrennikov
,
Izv. Vyssh. Uchebn. Zaved. Fiz.
5
,
27
(
1978
).
49.
B. Minaev, I. Danilovich, and Y. Serebrennikov, in Dynamics of Triplet Excitations in Molecular Crystals (Naukova Dumka, Kiev, 1989), p. 109 (in Russian).
50.
M.
Sharnoff
,
Chem. Phys. Lett.
2
,
498
(
1969
).
51.
D.
Burland
and
J.
Schmidt
,
Mol. Phys.
22
,
19
(
1971
).
52.
R. M.
Hochstrasser
and
T.
Lin
,
J. Chem. Phys.
53
,
2676
(
1970
).
53.
S.
Mattar
and
A.
Stephens
,
J. Phys. Chem. A
104
,
3718
(
2000
).
54.
S.
Mattar
,
Chem. Phys. Lett.
287
,
608
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.