A simple gradient correction to the local density approximation functional is proposed, which improves the structure of the exchange-correlation potential. The optimized generalized gradient approximation (GGA) functional provides uncoupled isotropic and anisotropic nuclear magnetic resonance shielding constants that are 2–3 times more accurate than those of commonly used GGAs, for a series of challenging molecules involving first- and second-row atoms; the results are competitive with those of ab initio wave function methods. A correlation is observed between the lowest occupied-virtual eigenvalue difference and the shielding accuracy. Magnetizabilities are also improved. The performance of the functional for structural and energetic predictions is investigated. These properties can be improved by relaxing the uniform electron gas condition, with no degradation in shielding quality. Atomization energies, ionization potentials, and molecular bond lengths are then comparable to those of other GGA functionals, although total energies are very poor.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
V. G.
Malkin
,
O. L.
Malkina
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Am. Chem. Soc.
116
,
5898
(
1994
).
3.
E.
Fadda
,
M. E.
Casida
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
91
,
67
(
2003
).
4.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
,
J. Chem. Phys.
115
,
26
(
2001
).
5.
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
312
,
475
(
1999
).
6.
P. J.
Wilson
and
D. J.
Tozer
,
Chem. Phys. Lett.
337
,
341
(
2001
).
7.
J.
Poater
,
E.
van Lenthe
, and
E. J.
Baerends
,
J. Chem. Phys.
118
,
8584
(
2003
).
8.
G.
Vignale
,
M.
Rasolt
, and
D. J. W.
Geldart
,
Phys. Rev. B
37
,
2502
(
1988
).
9.
P. J.
Wilson
,
R. D.
Amos
, and
N. C.
Handy
,
Mol. Phys.
97
,
757
(
1999
).
10.
N. F.
Ramsey
,
Phys. Rev.
78
,
699
(
1950
).
11.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
12.
S. J.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
13.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
14.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
15.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
16.
C. J.
Grayce
and
R. A.
Harris
,
Mol. Phys.
71
,
1
(
1990
).
17.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
18.
R. D. Amos, I. L. Alberts, J. S. Andrews et al., CADPAC6.5, The Cambridge Analytic Derivatives Package, 1998.
19.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
104
,
2574
(
1996
).
20.
T. D.
Bouman
and
A. E.
Hansen
,
Chem. Phys. Lett.
175
,
292
(
1990
).
21.
A. E.
Hansen
and
T. D.
Bouman
,
J. Chem. Phys.
82
,
5035
(
1995
).
22.
S. Huzinaga, Approximate Atomic Functions (University of Alberta, Edmonton, 1971).
23.
W. Kutzelnigg, U. Fleischer, and M. Schlindler, NMR-Basic Principles and Progress (Springer, Heidelberg, 1990), Vol. 23.
24.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
25.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
108
,
2545
(
1998
).
26.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
27.
Ionization potentials: CO and N2:
A. W.
Potts
and
T. A.
Williams
,
J. Electron Spectrosc. Relat. Phenom.
3
,
3
(
1974
);
PN:
D. K.
Bulgin
,
J. M.
Dyke
, and
A.
Morris
,
J. Chem. Soc., Faraday Trans. 2
73
,
983
(
1977
).
28.
C. O.
Almbladh
and
A. C.
Pedroza
,
Phys. Rev. A
29
,
2322
(
1984
).
29.
F.
Aryasetiawan
and
M. J.
Stott
,
Phys. Rev. B
38
,
2974
(
1988
).
30.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
31.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
32.
A. D.
Becke
,
J. Chem. Phys.
84
,
4524
(
1986
).
33.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
34.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
35.
E. K. U.
Gross
and
R. M.
Dreizler
,
Z. Phys. A
302
,
103
(
1981
).
36.
F.
Herman
,
J. P.
van Dyke
, and
I. B.
Ortenburger
,
Phys. Rev. Lett.
22
,
807
(
1969
).
37.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jørgensen
,
K. L.
Bak
, and
H. J. A.
Jensen
,
J. Chem. Phys.
100
,
8178
(
1994
).
38.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
103
,
3561
(
1995
).
39.
J. R.
Cheeseman
,
G. W.
Trucks
,
T. A.
Keith
, and
M. J.
Frisch
,
J. Chem. Phys.
104
,
5497
(
1996
).
40.
J.
Gauss
and
J. F.
Stanton
,
J. Chem. Phys.
102
,
251
(
1995
).
41.
J.
Gauss
,
Chem. Phys. Lett.
191
,
614
(
1992
).
42.
H.
Fukui
,
T.
Baba
,
J.
Narumi
,
H.
Inomata
,
K.
Miura
, and
H.
Matsuda
,
J. Chem. Phys.
105
,
4692
(
1996
).
43.
K.
Wolinski
,
C. L.
Hsu
,
J. F.
Hinton
, and
P.
Pulay
,
J. Chem. Phys.
99
,
7819
(
1993
).
44.
M. J.
Allen
and
D. J.
Tozer
,
Mol. Phys.
100
,
433
(
2002
).
45.
P. J.
Wilson
and
D. J.
Tozer
,
J. Mol. Struct.
602–603
,
191
(
2002
).
46.
G.
Menconi
,
P. J.
Wilson
, and
D. J.
Tozer
,
J. Chem. Phys.
114
,
3958
(
2001
).
47.
G.
Menconi
and
D. J.
Tozer
,
Chem. Phys. Lett.
360
,
38
(
2002
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
M.
Bühl
,
M.
Kaupp
,
O. L.
Malkina
, and
V. G.
Malkin
,
J. Comput. Chem.
20
,
91
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.