A simple extension of the Nosé–Hoover canonical dynamics based on a more general form of the thermostat kinetic energy term in the Nosé Hamiltonian is considered. With this extension considerable enhancement of chaotic behavior is achieved, particularly for small and stiff systems. The considered deterministic thermostat exhibits most of the desirable properties of a good canonical thermostatting mechanism.

1.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Calderon, Oxford, 1987).
2.
S.
Nosé
,
Prog. Theor. Phys. Suppl.
103
,
1
(
1991
).
3.
W. G. Hoover, Time Reversibility, Computer Simulation, and Chaos (World Scientific, Singapore, 1999).
4.
S.
Nosé
,
Mol. Phys.
5
,
255
(
1984
).
5.
G. C.
Lynch
and
B. M.
Pettitt
,
J. Chem. Phys.
107
,
8594
(
1997
).
6.
C.
Lo
and
B.
Palmer
,
J. Chem. Phys.
102
,
925
(
1995
).
7.
M. E.
Tuckerman
and
M.
Parrinello
,
J. Chem. Phys.
101
,
1302
(
1994
).
8.
Z.
Deng
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Chem. Phys.
100
,
7590
(
1994
).
9.
A.
Bulgac
and
D.
Kusnezov
,
Phys. Rev. A
42
,
5045
(
1990
).
10.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
11.
I.
Fukuda
and
H.
Nakamura
,
Phys. Rev. E
65
,
026105
(
2002
).
12.
I.
Fukuda
,
Phys. Rev. E
64
,
016203
(
2001
).
13.
J. S.
Andrade
, Jr.
,
M. P.
Almeida
,
A. A.
Moreira
, and
G. A.
Farias
,
Phys. Rev. E
65
,
036121
(
2002
).
14.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
15.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
16.
W. G.
Hoover
and
B. L.
Holian
,
Phys. Lett. A
211
,
253
(
1996
).
17.
J.
Jellinek
and
R. S.
Berry
,
Phys. Rev. A
40
,
2816
(
1989
).
18.
J.
Jellinek
,
J. Phys. Chem.
92
,
3163
(
1988
).
19.
Y.
Liu
and
M. E.
Tuckerman
,
J. Chem. Phys.
112
,
1685
(
2000
).
20.
In general n can be a positive real number. In this case, however, the second term in Eq. (5) must be replaced by more elaborate term sgn(ζ)ζ2n−1pi. Nonalgebraic forms of thermostat dynamics can also be considered, together with the condition that the integral over Ps exists.
21.
A particular form of scaling of the thermostat momentum is irrelevant for the final form of the equations in the physical space (Ref. 33), and it can be, e.g., Ps=Ps/s as well.
22.
C. P.
Dettmann
and
G. P.
Morriss
,
Phys. Rev. E
55
,
3693
(
1997
).
23.
D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990).
24.
W. G.
Hoover
and
H. A.
Posch
,
Chaos
8
,
366
(
1998
).
25.
D.
Kusnezov
,
A.
Bulgac
, and
W.
Bauer
,
Ann. Phys. (N.Y.)
204
,
155
(
1990
).
26.
D.
Kusnezov
and
A.
Bulgac
,
Ann. Phys. (N.Y.)
214
,
180
(
1992
).
27.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983).
28.
H. A.
Posch
,
W. G.
Hoover
, and
F. J.
Vesley
,
Phys. Rev. A
33
,
4253
(
1986
).
29.
B. L.
Holian
,
A. F.
Voter
, and
R.
Ravelo
,
Phys. Rev. E
52
,
2338
(
1995
).
30.
D. J.
Evans
and
B. L.
Holian
,
J. Chem. Phys.
83
,
4069
(
1985
).
31.
W. G. Hoover, K. Aoki, C. G. Hoover, and S. V. De Groot, Physcia D (to be published); http://www.mpipks-dresden.mpg.de/∼chaotran/proceedings/chaotran_proc.html
32.
A. C.
Brańka
,
Phys. Rev. E
61
,
4769
(
2000
).
33.
A. C.
Brańka
and
K. W.
Wojciechowski
,
Phys. Rev. E
62
,
3281
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.