The “basic-hopping” global optimization technique developed by Wales and Doye is employed to study the global minima of silicon clusters Sin(3⩽n⩽30) with three empirical potentials: the Stillinger–Weber (SW), the modified Stillinger–Weber (MSW), and the Gong potentials. For the small-sized SW and Gong clusters (3⩽n⩽15), it is found that the global minima obtained based on the basin-hopping method are identical to those reported by using the genetic algorithm [Iwamatsu, J. Chem. Phys. 112, 10976 (2000)], as well as with those by using molecular dynamics and the steepest-descent quench (SDQ) method [Feuston, Kalia, and Vashishta, Phys. Rev. B 37, 6297 (1988)]. However, for the mid-sized SW clusters (16⩽n⩽20), the global minima obtained differ from those based on the SDQ method, e.g., the appearance of the endohedral atom with fivefold coordination starting at n=17, as opposed to n=19. For larger SW clusters (20⩽n⩽30), it is found that the “bulklike” endohedral atom with tetrahedral coordination starts at n=20. In particular, the overall structural features of SW Si21,Si23,Si25, and Si28 are nearly identical to the MSW counterparts. With the SW Si21 as the starting structure, a geometric optimization at the B3LYP/6-31G(d) level of density-functional theory yields an isomer similar to the ground-state- isomer of Si21 reported by Pederson et al. [Phys. Rev. B 54, 2863 (1996)].

1.
J. L.
Elkind
,
J. M.
Alford
,
F. D.
Weiss
,
R. T.
Laaksonene
, and
R. E.
Smalley
,
J. Chem. Phys.
87
,
2397
(
1987
).
2.
Q. L.
Zhang
,
Y.
Liu
,
R. F.
Curl
,
F. K.
Tittel
, and
R. E.
Smalley
,
J. Chem. Phys.
88
,
1670
(
1988
).
3.
M. F.
Jarrold
,
Science
252
,
1085
(
1991
).
4.
M. F.
Jarrold
and
V. A.
Constant
,
Phys. Rev. Lett.
67
,
2994
(
1991
).
5.
M. F.
Jarrold
and
J. E.
Bower
,
J. Chem. Phys.
96
,
9180
(
1992
).
6.
E. C.
Honea
,
A.
Ogura
,
C. A.
Murray
,
K.
Raghavachari
,
W. O.
Sprenger
,
M. F.
Jarrold
, and
W. L.
Brown
,
Nature (London)
366
,
42
(
1993
).
7.
S.
Li
,
R. J.
Van Zee
,
W.
Weltner
, Jr.
, and
K.
Raghavachari
,
Chem. Phys. Lett.
243
,
275
(
1995
).
8.
K.
Fuke
,
K.
Tsukamoto
,
F.
Misaizu
, and
M.
Sanekata
,
J. Chem. Phys.
99
,
7807
(
1993
).
9.
D.
Tomanek
and
M. A.
Schlüter
,
Phys. Rev. Lett.
56
,
1055
(
1986
).
10.
K.
Raghavachari
and
C. M.
Rohlfing
,
J. Chem. Phys.
89
,
2219
(
1988
).
11.
P.
Ballone
,
W.
Audreoni
,
R.
Car
, and
M.
Parrinello
,
Phys. Rev. Lett.
60
,
271
(
1988
).
12.
B. C.
Bolding
and
H. C.
Andersen
,
Phys. Rev. B
41
,
10568
(
1990
).
13.
E.
Kaxiras
,
Phys. Rev. Lett.
64
,
551
(
1990
).
14.
E.
Kaxiras
and
K.
Jackson
,
Phys. Rev. Lett.
71
,
727
(
1993
).
15.
P.
Ordejón
,
D.
Lebedenko
, and
M.
Menon
,
Phys. Rev. B
50
,
5645
(
1994
).
16.
I. H.
Lee
,
K. J.
Chang
, and
Y. H.
Lee
,
J. Phys.: Condens. Matter
6
,
741
(
1994
).
17.
A.
Bahel
and
M. V.
Ramakrishna
,
Phys. Rev. B
51
,
13849
(
1995
).
18.
J. C.
Grossman
and
L.
Mitáš
,
Phys. Rev. Lett.
95
,
1323
(
1995
).
19.
M. R.
Pederson
,
K.
Jackson
,
D. V.
Porezag
,
Z.
Hajnal
, and
T.
Frauenheim
,
Phys. Rev. B
54
,
2863
(
1996
).
20.
A.
Sieck
,
D.
Porezag
,
Th.
Frauenheim
,
M. R.
Pederson
, and
K.
Jackson
,
Phys. Rev. A
56
,
4890
(
1997
).
21.
S.
Wei
,
B. N.
Barnett
, and
U.
Landman
,
Phys. Rev. B
55
,
7935
(
1997
).
22.
I.
Vasiliev
,
S.
Ogut
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
78
,
4805
(
1997
).
23.
K.-M.
Ho
,
A. A.
Shvartsbug
,
B.
Pan
,
Z.-Y.
Lu
,
C.-Z.
Wang
,
J. G.
Wacker
,
J. L.
Fye
, and
W. F.
Jarrold
,
Nature (London)
392
,
582
(
1998
).
24.
B.
Liu
,
Z.-Y.
Lu
,
B.
Pan
,
C.-Z.
Wang
,
K.-M.
Ho
,
A. A.
Shvartsbug
, and
M. F.
Jarrold
,
J. Chem. Phys.
109
,
9401
(
1998
).
25.
Y.
Luo
,
J.
Zhao
, and
G. H.
Wang
,
Phys. Rev. B
60
,
10703
(
1999
).
26.
L.
Mitas
,
J. C.
Grossman
,
I.
Stich
, and
J.
Tobik
,
Phys. Rev. Lett.
84
,
1479
(
2000
).
27.
B. X.
Li
,
P. L.
Cao
, and
M.
Jiang
,
Phys. Status Solidi
218
,
399
(
2000
).
28.
Z.-Y.
Lu
,
C.-Z.
Wang
, and
K.-M.
Ho
,
Phys. Rev. B
61
,
2329
(
2001
).
29.
X.
Zhu
and
X. C.
Zeng
,
J. Chem. Phys.
118
,
3558
(
2003
).
30.
J. H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975).
31.
F.
Blaisten-Barojas
and
D.
Levesque
,
Phys. Rev. B
34
,
3910
(
1986
).
32.
B. P.
Feuston
,
R. K.
Kalia
, and
P.
Vashishta
,
Phys. Rev. B
35
,
6222
(
1987
).
33.
B. P.
Feuston
,
R. K.
Kalia
, and
P.
Vashishta
,
Phys. Rev. B
37
,
6297
(
1988
).
34.
M.
Iwamatsu
,
J. Chem. Phys.
112
,
10976
(
2000
).
35.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
36.
X. G.
Gong
,
Phys. Rev. B
47
,
2329
(
1993
).
37.
R. L. C.
Vink
,
G. T.
Barkema
,
W. F.
van der Weg
, and
N.
Mousseau
,
J. Non-Cryst. Solids
282
,
248
(
2001
).
38.
D. J.
Wales
and
H. A.
Scheraga
,
Science
285
,
1368
(
1999
).
39.
R.
Judson
,
Rev. Comput. Chem.
10
,
1
(
1997
).
40.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
41.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature (London)
394
,
758
(
1998
).
42.
J. P. K.
Doye
and
D. J.
Wales
,
Phys. Rev. Lett.
80
,
1357
(
1998
).
43.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
110
,
6896
(
1999
).
44.
D. J.
Wales
and
M. P.
Hodges
,
Chem. Phys. Lett.
286
,
65
(
1998
).
45.
M. J. Frisch et al., GAUSSIAN 98, Revision A.11, Gaussian, Inc., Pittsburgh, PA, 1998.
This content is only available via PDF.
You do not currently have access to this content.