A multilayer (ML) formulation of the multiconfiguration time-dependent Hartree (MCTDH) theory is presented. In this new approach, the single-particle (SP) functions in the original MCTDH method are further expressed employing a time-dependent multiconfigurational expansion. The Dirac–Frenkel variational principle is then applied to optimally determine the equations of motion. Following this strategy, the SP groups are built in several layers, where each top layer SP can contain many more Cartesian degrees of freedom than in the previous formulation of the MCTDH method. As a result, the ML-MCTDH method has the capability of treating substantially more physical degrees of freedom than the original MCTDH method, and thus significantly enhances the ability of carrying out quantum dynamical simulations for complex molecular systems. The efficiency of the new formulation is demonstrated by converged quantum dynamical simulations for systems with a few hundred to a thousand degrees of freedom.

1.
(a)
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
);
(b)
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
2.
M. H.
Beck
,
A.
Jackle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
3.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
4.
For reviews, see (a)
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
);
W. H.
Miller
, (b)
J. Phys. Chem. A
105
,
2942
(
2001
).
5.
N. F.
Mott
,
Proc. Cambridge Philos. Soc.
27
,
553
(
1931
).
6.
J. B.
Delos
and
W. R.
Thorson
,
Phys. Rev. A
6
,
720
(
1972
).
7.
(a)
G. D.
Billing
,
Chem. Phys. Lett.
30
,
391
(
1975
);
G. D.
Billing
, (b)
J. Chem. Phys.
99
,
5849
(
1993
).
8.
(a)
R. B.
Gerber
,
V.
Buch
, and
M. A.
Ratner
,
J. Chem. Phys.
77
,
3022
(
1982
);
(b)
V.
Buch
,
R. B.
Gerber
, and
M. A.
Ratner
,
Chem. Phys. Lett.
101
,
44
(
1983
).
9.
D. A.
Micha
,
J. Chem. Phys.
78
,
7138
(
1983
).
10.
R.
Graham
and
M.
Höhnerbach
,
Z. Phys. B: Condens. Matter
57
,
233
(
1984
).
11.
(a)
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
54
,
4297
(
1971
);
(b)
R. K.
Preston
and
J. C.
Tully
,
J. Chem. Phys.
55
,
562
(
1971
);
(c)
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
12.
M. F.
Herman
,
J. Chem. Phys.
76
,
2949
(
1982
).
13.
F. J.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
).
14.
S.
Chapman
,
Adv. Chem. Phys.
82
,
423
(
1992
).
15.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2979
(
2001
).
16.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2991
(
2001
).
17.
M.
Thoss
and
H.
Wang
,
Chem. Phys. Lett.
358
,
298
(
2002
).
18.
H.
Wang
and
M.
Thoss
,
J. Phys. Chem. A
107
,
2126
(
2003
).
19.
H. Wang and M. Thoss, Isr. J. Chem. (to be published).
20.
J. Frenkel, Wave Mechanics (Clarendon, Oxford, 1934).
21.
(a)
G.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
105
,
4412
(
1996
);
(b)
G.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
109
,
3518
(
1998
);
(c)
A.
Raab
,
G.
Worth
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
936
(
1999
);
(d)
S.
Mahapatra
,
G. A.
Worth
,
H.-D.
Meyer
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Phys. Chem. A
105
,
5567
(
2001
);
(e)
H.
Köppel
,
M.
Döscher
,
I.
Baldea
,
H.-D.
Meyer
, and
P. G.
Szalay
,
J. Chem. Phys.
117
,
2657
(
2002
);
(f)
M.
Nest
and
H.-D.
Meyer
,
J. Chem. Phys.
117
,
10499
(
2002
).
22.
(a)
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
113
,
5115
(
2000
);
(b)
F.
Huarte-Larranaga
and
U.
Manthe
,
J. Chem. Phys.
117
,
4635
(
2002
).
23.
H.
Wang
,
J. Chem. Phys.
113
,
9948
(
2000
).
24.
Z.
Bac̆ić
and
J. C.
Light
,
J. Chem. Phys.
85
,
4594
(
1986
).
25.
H.-D. Meyer (private communication).
26.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
27.
U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999).
28.
L.
Zusman
,
Chem. Phys.
49
,
295
(
1980
).
29.
A.
Garg
,
J.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
30.
I.
Rips
and
J.
Jortner
,
J. Chem. Phys.
87
,
2090
(
1987
).
31.
R. D.
Coalson
,
J. Chem. Phys.
86
,
995
(
1987
).
32.
D. Y.
Yang
and
R. I.
Cukier
,
J. Chem. Phys.
91
,
281
(
1989
).
33.
C. H.
Mak
and
D.
Chandler
,
Phys. Rev. A
44
,
2352
(
1991
).
34.
M.
Winterstetter
and
W.
Domcke
,
Chem. Phys. Lett.
236
,
445
(
1995
).
35.
(a)
G.
Stock
,
J. Chem. Phys.
103
,
1561
(
1995
);
G.
Stock
, (b)
Phys. Rev. E
51
,
3038
(
1995
).
36.
J.
Stockburger
and
C. H.
Mak
,
Phys. Rev. Lett.
80
,
2657
(
1998
).
37.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
38.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
39.
G.
Stock
and
U.
Müller
,
J. Chem. Phys.
111
,
65
(
1999
).
40.
M.
Grifoni
,
E.
Paladino
, and
U.
Weiss
,
Eur. Phys. J. B
10
,
719
(
1999
).
41.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
42.
R. J. D. Miller, G. L. McLendon, A. J. Nozik, W. Schneider, and F. Willig, Surface Electron Transfer Processes (VCH, New York, 1995).
43.
Y. Q.
Gao
,
Y.
Georievski
, and
R. A.
Marcus
,
J. Chem. Phys.
112
,
3358
(
2000
).
44.
A.
Hagfeldt
and
M.
Grätzel
,
Chem. Rev.
95
,
49
(
1995
).
45.
M.
Grätzel
,
Nature (London)
414
,
338
(
2001
).
46.
J.
Wachtveitl
,
R.
Huber
,
S.
Spörlein
,
J.
Moser
, and
M.
Grätzel
,
Int. J. Photoenergy
153
,
131
(
1999
).
47.
C.
Zimmermann
,
F.
Willig
,
S.
Ramakrishna
,
B.
Burfeindt
,
B.
Pettinger
,
R.
Eichberger
, and
W.
Storck
,
J. Phys. Chem. B
105
,
9245
(
2001
).
48.
J. M.
Rehm
,
G. L.
McLendon
,
Y.
Nagasawa
,
K.
Yoshihara
,
J.
Moser
, and
M.
Grätzel
,
J. Phys. Chem.
100
,
9577
(
1996
).
49.
H. N.
Ghosh
,
J. B.
Ashbury
,
Y.
Wang
, and
T.
Lian
,
J. Phys. Chem. B
102
,
10208
(
1998
).
50.
R.
Huber
,
S.
Spörlein
,
J.
Moser
,
M.
Grätzel
, and
J.
Wachtveitl
,
J. Phys. Chem. B
104
,
8995
(
2000
).
51.
J. B.
Ashbury
,
E.
Hao
,
Y.
Wang
,
H. N.
Ghosh
, and
T.
Lian
,
J. Phys. Chem. B
105
,
4545
(
2001
).
52.
J. P. Muscat and D. M. Newns, in Progress in Surface Science, edited by S. G. Davison (Pergamon, Oxford, 1978), Vol. 9, p. 1.
53.
K. L.
Sebastian
,
J. Chem. Phys.
90
,
5056
(
1989
).
54.
Y. G.
Boroda
and
G. A.
Voth
,
J. Chem. Phys.
104
,
6168
(
1996
).
55.
A. K.
Kazansky
,
J. Phys. B
29
,
4709
(
1996
).
56.
H.
Plöhn
,
M.
Thoss
,
M.
Winterstetter
, and
W.
Domcke
,
Phys. Rev. A
58
,
1152
(
1998
).
57.
M.
Thoss
and
W.
Domcke
,
J. Chem. Phys.
109
,
6577
(
1998
).
58.
It is noted that less than 500 bath modes are necessary to obtain a converged result over the timescale shown in Fig. 4. The calculations for the bath parameters ωc⩽400 and ωc=600 require 50 and 100 bath modes for convergence, respectively. The 500 modes employed in the actual calculation are only used for demonstration purpose.
This content is only available via PDF.
You do not currently have access to this content.