We report a new method for calculating the Wigner transform of the Boltzmann operator in the canonical ensemble. The transform is accomplished by writing the Boltzmann operator in a semiharmonic form, utilizing the variational centroid effective frequencies introduced by Feynman and Kleinert (FK). The approximate many-body Wigner transformed Boltzmann operator is then utilized with a linearized path integral (LPI) representation for correlation functions. It is shown that this new FK-LPI method is capable of calculating quite accurately the short time behavior of linear and highly nonlinear correlation functions for low temperature Lennard-Jones model systems and that it is vastly superior to classical dynamics. The feasibility of the FK-LPI method for large systems is illustrated by considering a model liquid composed of 32 oxygen molecules with periodic boundary conditions. Initial conditions for molecular dynamics are obtained from its Boltzmann Wigner transform and the FK-LPI method is shown to describe correctly the zero-point motion of the liquid. The effective frequency representation of the Wigner transformed thermal density operator provides an efficient way of sampling nonclassical initial conditions for molecular-dynamics simulations more generally. Applications to vibrational energy relaxation and rate constant calculations in complex molecular systems are discussed.

1.
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
2.
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer-Verlag, Berlin, 1985).
3.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
1999
).
4.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
5.
T.
Yamamoto
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
116
,
7335
(
2002
).
6.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1990
).
7.
A.
Walton
and
D. E.
Manolopoulos
,
Mol. Phys.
87
,
961
(
1996
).
8.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
9.
M. A.
Sepulveda
and
F.
Grossmann
,
Adv. Chem. Phys.
116
,
191
(
1996
).
10.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
11.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
12.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
13.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
14.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2371
(
1999
).
15.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
16.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
(
1998
).
17.
D. R.
Reichman
,
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
,
J. Chem. Phys.
113
,
919
(
2000
).
18.
J. A.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8024
(
2001
).
19.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
106
,
2400
(
1996
).
20.
S.
Jang
,
Y.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. A
103
,
10289
(
1999
).
21.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
110
,
6635
(
1999
).
22.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
118
,
8173
(
2003
).
23.
M.
Gell-Mann
and
J. B.
Hartle
,
Phys. Rev. D
47
,
3345
(
1993
).
24.
S.
Zhang
and
E.
Pollak
,
J. Chem. Phys.
118
,
4357
(
2003
).
25.
E.
Fredj
,
R. B.
Gerber
, and
M. A.
Ratner
,
J. Chem. Phys.
105
,
1121
(
1996
).
26.
R. P.
Feynman
and
H.
Kleinert
,
Phys. Rev. A
34
,
5080
(
1986
).
27.
W.
Janke
and
H.
Kleinert
,
Chem. Phys. Lett.
137
,
162
(
1987
).
28.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1995).
29.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
30.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
31.
E. J.
Heller
,
J. Chem. Phys.
65
,
1289
(
1976
).
32.
N. E.
Henriksen
,
Chem. Phys. Lett.
121
,
139
(
1985
).
33.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, Massachusetts, 1998).
34.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6184
(
1994
).
35.
A.
Cuccoli
,
R.
Giachetti
,
V.
Tognetti
,
R.
Vaia
, and
P.
Verrucchi
,
J. Phys.: Condens. Matter
7
,
7891
(
1995
).
36.
J. A.
Poulsen
,
S. R.
Keiding
, and
P. J.
Rossky
,
Chem. Phys. Lett.
336
,
488
(
2001
).
37.
J. A.
Poulsen
and
P. J.
Rossky
,
J. Chem. Phys.
115
,
8014
(
2001
).
38.
D. W.
Oxtoby
,
Adv. Chem. Phys.
47
,
487
(
1981
).
39.
R.
Rey
and
J. T.
Hynes
,
J. Chem. Phys.
104
,
2356
(
1996
).
40.
R.
Rey
and
J. T.
Hynes
,
J. Chem. Phys.
108
,
142
(
1998
).
41.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
109
,
1998
(
1998
).
42.
J. A.
Poulsen
,
T. M.
Nymand
, and
S. R.
Keiding
,
Chem. Phys. Lett.
343
,
581
(
2001
).
43.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1987).
44.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
45.
K. F.
Everitt
,
S. A.
Egorov
, and
J. L.
Skinner
,
Chem. Phys.
235
,
115
(
1998
).
46.
K. F.
Everitt
and
J. L.
Skinner
,
J. Chem. Phys.
110
,
4467
(
1999
).
47.
K. F.
Everitt
,
J. L.
Skinner
, and
B. M.
Ladanyi
,
J. Chem. Phys.
116
,
179
(
2002
).
48.
B.
Faltermeier
,
R.
Protz
, and
M.
Maier
,
Chem. Phys.
62
,
377
(
1981
).
49.
Huber and Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
50.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
51.
S. A.
Egorov
and
J. L.
Skinner
,
Chem. Phys. Lett.
293
,
469
(
1998
).
52.
J. S.
Bader
and
B. J.
Berne
,
J. Chem. Phys.
100
,
8359
(
1994
).
53.
M.
Tuckerman
and
B. J.
Berne
,
J. Chem. Phys.
98
,
7301
(
1993
).
54.
R. E.
Larsen
and
R. M.
Stratt
,
J. Chem. Phys.
110
,
1036
(
1999
).
55.
N.
Markovic’
,
P. U.
Andersson
,
M. B.
Naagaard
, and
J. B. C.
Pettersson
,
Chem. Phys. Lett.
247
,
413
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.