The kinetics of isothermal adsorption and migration of atomic hydrogen on a Si(100) surface has been investigated by the time-of-flight scattering and recoiling spectrometry technique. A continuous decrease in saturation coverage with temperature under constant atomic hydrogen exposure has been observed for temperatures in the range 325–750 K. This observation is in contrast with a widely accepted view of the Si(100)/H surface as having three fixed coverage states within certain temperature windows. For TS=500–650 K, the decrease is described by a kinetic model in which the surface concentration of physisorbed hydrogen atoms is depleted due to the increased rate of migration from precursor sites to primary monohydride sites. The model suggests a mechanism to explain the dependence of the saturation value on temperature in this range. The migration constant obeys an Arrhenius expression with an activation energy of 0.71 eV. A significant concentration of hydrogen atoms occupying precursor states acts as a reservoir, saturating the monohydride dangling bonds after the hydrogen source is shut off and discontinuation of Eley–Rideal abstraction.

1.
W.
Widdra
,
S. I.
Yi
,
R.
Maboudian
,
G. A. D.
Briggs
, and
W. H.
Weinberg
,
Phys. Rev. Lett.
74
,
2074
(
1995
).
2.
K.
Sinniah
,
M. G.
Sherman
,
L. B.
Lewis
,
W. H.
Weinberg
,
J. T.
Yates
, Jr.
, and
K. C.
Janda
,
Phys. Rev. Lett.
62
,
567
(
1989
).
3.
K.
Sinniah
,
M. G.
Sherman
,
L. B.
Lewis
,
W. H.
Weinberg
,
J. T.
Yates
, Jr.
, and
K. C.
Janda
,
J. Chem. Phys.
92
,
5700
(
1990
).
4.
D. D.
Koleske
,
S. M.
Gates
, and
B.
Jackson
,
J. Chem. Phys.
101
,
3301
(
1994
).
5.
U.
Hansen
and
P.
Vogl
,
Phys. Rev. B
57
,
13295
(
1998
).
6.
T.
Sakurai
and
H. D.
Hagstrum
,
Phys. Rev. B
14
,
1593
(
1975
).
7.
John J.
Boland
,
Phys. Rev. Lett.
65
,
3325
(
1990
).
8.
John J.
Boland
,
Surf. Sci.
261
,
17
(
1992
).
9.
H. N.
Waltenburg
and
J. T.
Yates
,Jr.
,
Chem. Rev. (Washington, D.C.)
95
,
1589
(
1995
);
K. W.
Kolasinski
,
Int. J. Mod. Phys. B
9
,
2753
(
1995
);
K.
Oura
,
V. G.
Lifshits
,
A. A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
,
Surf. Sci. Rep.
35
,
1
(
1999
).
10.
M. C.
Flowers
,
N. B. H.
Jonathan
,
A.
Morris
, and
S.
Wright
,
Surf. Sci.
396
,
227
(
1998
).
11.
Y.
Wei
,
L.
Li
, and
I. S. T.
Tsong
,
Appl. Phys. Lett.
66
,
1818
(
1995
).
12.
Y.-J.
Zheng
,
J. R.
Engstrom
,
J.
Zhang
,
A.
Schellinger
, and
B. A.
Joyce
,
Surf. Sci.
470
,
131
(
2000
).
13.
M. P.
D’Evelyn
,
Y. L.
Yang
, and
L. F.
Sutcu
,
J. Chem. Phys.
96
,
852
(
1992
).
14.
John J.
Boland
,
Phys. Rev. Lett.
67
,
1539
(
1991
).
15.
John J.
Boland
,
J. Vac. Sci. Technol. A
10
,
2458
(
1992
).
16.
E.
Hill
,
B.
Freelon
, and
E.
Ganz
,
Phys. Rev. B
60
,
15896
(
1999
).
17.
S. K.
Jo
,
J. H.
Kang
,
X.-M.
Yan
,
J. M.
White
,
J. G.
Ekerdt
,
J. W.
Keto
, and
J.
Lee
,
Phys. Rev. Lett.
85
,
2144
(
2000
).
18.
D.-S.
Lin
and
R.-P.
Chen
,
Phys. Rev. B
60
,
R8461
(
1999
).
19.
A.
Kubo
,
Y.
Ishii
, and
M.
Kitajima
,
J. Chem. Phys.
117
,
11336
(
2002
).
20.
E.
Hayakawa
,
F.
Khanom
,
T.
Yoshifuku
,
S.
Shimokawa
,
A.
Namiki
, and
T.
Ando
,
Phys. Rev. B
65
,
033405
(
2002
).
21.
E. S.
Tok
,
J. R.
Engstrom
, and
H.
Chuan Kang
,
J. Chem. Phys.
118
,
3294
(
2003
).
22.
J. E.
Vasek
,
Z.
Zhang
,
C. T.
Salling
, and
M. G.
Lagally
,
Phys. Rev. B
51
,
17207
(
1995
).
23.
M.
Fehrenbacher
,
J.
Spitzmüller
,
U.
Memmert
,
H.
Rauscher
, and
R. J.
Behm
,
J. Vac. Sci. Technol. A
14
,
1499
(
1996
).
24.
D.-S.
Lin
,
E. S.
Hirschorn
,
T.-C.
Chiang
,
R.
Tsu
,
D.
Lubben
, and
J. E.
Greene
,
Phys. Rev. B
45
,
3494
(
1992
).
25.
M.
Copel
and
R. M.
Tromp
,
Phys. Rev. Lett.
72
,
1236
(
1994
).
26.
A.
Sakai
and
T.
Tatsumi
,
Appl. Phys. Lett.
64
,
52
(
1994
).
27.
O.
Grizzi
,
M.
Shi
,
H.
Bu
, and
J. W.
Rabalais
,
Rev. Sci. Instrum.
61
,
740
(
1990
).
28.
P.
Kisliuk
,
J. Phys. Chem. Solids
3
,
95
(
1957
).
This content is only available via PDF.
You do not currently have access to this content.