The prospect of employing the stimulated Raman adiabatic Passage (STIRAP) technique under the influence of pure dephasing is explored. A general analysis of how decoherence influences the performance of STIRAP is provided. Starting from a general and fully quantum-mechanical system–bath Hamiltonian, we derive a quantum master equation (QME) that describes the reduced dynamics of a dissipative STIRAP system. The derivation is based on the standard assumptions of (1) weak system–bath coupling; (2) Markovity, in the sense that the relaxation times are long in comparison to the bath correlation time, τc; and (3) weak field–matter interaction, in the sense that the Rabi period of the driving laser fields, Ω−1, is longer than τc. The dissipative term in this QME is the same as it would have been in the absence of the driving fields, because of the assumption of weak field–matter interaction. This type of uncontrollable dephasing is seen to diminish the efficiency of STIRAP, although the actual loss strongly depends on the specific dephasing mechanism. We also derive a more general QME, which is applicable to driving fields of arbitrary intensity. The dissipative term in the new QME is explicitly dependent on the driving fields, and therefore controllable. Intense fields are shown to effectively slow down the dephasing when Ωτc>1, which suggests that it may be possible to use STIRAP in order to transfer population between the quantum states of a solute molecule embedded in a solvent.

1.
D. J.
Tannor
and
S. A.
Rice
,
Adv. Chem. Phys.
70
,
441
(
1988
).
2.
R. J.
Gordon
and
S. A.
Rice
,
Annu. Rev. Phys. Chem.
48
,
601
(
1997
).
3.
H.
Rabitz
and
W.
Zhu
,
Acc. Chem. Res.
33
,
572
(
2000
).
4.
S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).
5.
S. A.
Rice
and
S. P.
Shah
,
Phys. Chem. Chem. Phys.
4
,
1683
(
2002
).
6.
M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes (Wiley, Hoboken, New Jersey, 2002).
7.
R.
Kosloff
et al.,
Chem. Phys.
139
,
201
(
1989
).
8.
W.
Zhu
,
J.
Botina
, and
H.
Rabitz
,
J. Chem. Phys.
108
,
1953
(
1998
).
9.
Y.
Ohtsuki
,
W.
Zhu
, and
H.
Rabitz
,
J. Chem. Phys.
110
,
9825
(
1999
).
10.
A.
Assion
et al.,
Science
282
,
919
(
1998
).
11.
R. J.
Levis
,
G. M.
Menkir
, and
H.
Rabitz
,
Science
292
,
709
(
2001
).
12.
B. J.
Pearson
,
J. L.
White
,
T. C.
Weinacht
, and
P. H.
Bucksbaum
,
Phys. Rev. A
63
,
063412
(
2001
).
13.
F.
Grossmann
,
T.
Dittrich
,
P.
Jung
, and
P.
Hänggi
,
Phys. Rev. Lett.
67
,
516
(
1991
).
14.
R.
Bavli
and
H.
Metiu
,
Phys. Rev. Lett.
69
,
1986
(
1992
).
15.
D. G.
Evans
,
R. D.
Coalson
,
H. J.
Kim
, and
Y.
Dakhnovskii
,
Phys. Rev. Lett.
75
,
3649
(
1995
).
16.
A.
Bartana
,
R.
Kosloff
, and
D. J.
Tannor
,
J. Chem. Phys.
99
,
196
(
1993
).
17.
A.
Bartana
,
R.
Kosloff
, and
D. J.
Tannor
,
J. Chem. Phys.
106
,
1435
(
1997
).
18.
D. E.
Makarov
and
N.
Makri
,
Phys. Rev. B
52
,
R2257
(
1995
).
19.
N.
Makri
,
J. Chem. Phys.
106
,
2286
(
1997
).
20.
N.
Makri
and
L.
Wei
,
Phys. Rev. E
55
,
2475
(
1997
).
21.
R. I.
Cukier
,
C.
Denk
, and
M.
Morillo
,
Chem. Phys.
217
,
179
(
1997
).
22.
M.
Grifoni
and
P.
Hänggi
,
Phys. Rep.
304
,
229
(
1998
).
23.
O.
Kühn
,
Eur. Phys. J. D
6
,
49
(
1999
).
24.
H.
Naundorf
,
K.
Sundermann
, and
O.
Kühn
,
Chem. Phys.
240
,
163
(
1999
).
25.
O.
Kuhn
,
Y.
Zhao
,
F.
Shuang
, and
Y.
Yan
,
J. Chem. Phys.
112
,
6104
(
2000
).
26.
N.
Dŏslić
,
O.
Kühn
,
J.
Manz
, and
K.
Sundermann
,
J. Phys. Chem. A
102
,
9645
(
1998
).
27.
N.
Dŏslić
et al.,
Phys. Chem. Chem. Phys.
1
,
1249
(
1999
).
28.
T. C.
Weinacht
,
J. L.
White
, and
P. H.
Bucksbaum
,
J. Phys. Chem. A
103
,
10166
(
1999
).
29.
E.
Geva
,
J. Chem. Phys.
116
,
1629
(
2001
).
30.
M.
Demirplak
and
S. A.
Rice
,
J. Chem. Phys.
116
,
8028
(
2002
).
31.
Y.
Ohtsuki
,
K.
Nakagami
,
W.
Zhu
, and
H.
Rabitz
,
Chem. Phys.
287
,
197
(
2003
).
32.
R. S.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
33.
M. Q.
Phan
and
H.
Rabitz
,
Chem. Phys.
217
,
389
(
1997
).
34.
C. J.
Bardeen
et al.,
Chem. Phys. Lett.
280
,
151
(
1997
).
35.
M. Q.
Phan
and
H.
Rabitz
,
J. Chem. Phys.
110
,
34
(
1999
).
36.
S.
Vajda
et al.,
Chem. Phys.
267
,
231
(
2001
).
37.
T.
Brixner
,
B.
Kiefer
, and
G.
Gerber
,
Chem. Phys. Lett.
267
,
241
(
2001
).
38.
T. C.
Weinacht
et al.,
Chem. Phys. Lett.
344
,
333
(
2001
).
39.
T. C.
Weinacht
and
P. H.
Bucksbaum
,
J. Opt. B: Quantum Semiclassical Opt.
4
,
R35
(
2002
).
40.
J. R.
Kuklinski
,
U.
Gaubatz
,
F. T.
Hioe
, and
K.
Bergmann
,
Phys. Rev. A
40
,
6741
(
1989
).
41.
U.
Gaubatz
,
P.
Rudecki
,
S.
Schiemann
, and
K.
Bergmann
,
J. Chem. Phys.
92
,
5363
(
1990
).
42.
A.
Kühn
et al.,
J. Chem. Phys.
96
,
4215
(
1992
).
43.
C. E.
Caroll
and
F. T.
Hioe
,
Phys. Rev. A
42
,
1522
(
1990
).
44.
T. A.
Laine
and
S.
Stenholm
,
Phys. Rev. A
53
,
2501
(
1996
).
45.
N. V.
Vitanov
and
S.
Stenholm
,
Opt. Commun.
127
,
215
(
1996
).
46.
M. P.
Fewell
,
B. W.
Shore
, and
K.
Bergmann
,
Aust. J. Phys.
50
,
281
(
1997
).
47.
A.
Kühn
,
S.
Steuerwald
, and
K.
Bergmann
,
Eur. Phys. J. D
1
,
57
(
1998
).
48.
K.
Bergmann
,
H.
Theuer
, and
W.
Shore
,
Rev. Mod. Phys.
70
,
1003
(
1998
).
49.
I. R.
Sola
,
V. S.
Malinovski
, and
D. J.
Tannor
,
Phys. Rev. A
60
,
3081
(
1999
).
50.
L. P.
Yatsenko
,
V. I.
Romanenko
,
B. W.
Shore
, and
K.
Bergmann
,
Phys. Rev. A
65
,
043409
(
2002
).
51.
E.
Geva
,
R.
Kosloff
, and
J. L.
Skinner
,
J. Chem. Phys.
102
,
8541
(
1995
).
52.
E.
Geva
and
R.
Kosloff
,
J. Chem. Phys.
104
,
7681
(
1996
).
53.
K. F.
Everitt
and
J. L.
Skinner
,
J. Chem. Phys.
110
,
4467
(
1999
).
54.
F.
Haake
,
Springer Tracts Mod. Phys.
66
,
98
(
1973
).
55.
R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer-Verlag, Berlin, 1987).
56.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).
57.
L.
Viola
and
S.
Lloyd
,
Phys. Rev. A
58
,
2733
(
1998
).
58.
G. S.
Agarwal
,
Phys. Rev. A
61
,
013809
(
1999
).
59.
D.
Vitali
and
P.
Tombesi
,
Phys. Rev. A
59
,
4178
(
1999
).
60.
C.
Search
and
P. R.
Berman
,
Phys. Rev. Lett.
85
,
2272
(
2000
).
61.
C.
Meier
and
D.
Tannor
,
J. Chem. Phys.
111
,
3365
(
1999
).
62.
E.
Geva
,
E.
Rosenman
, and
D. J.
Tannor
,
J. Chem. Phys.
113
,
1380
(
2000
).
63.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
64.
E.
Geva
and
R.
Kosloff
,
J. Chem. Phys.
96
,
3054
(
1992
).
65.
E.
Geva
and
R.
Kosloff
,
J. Chem. Phys.
97
,
4398
(
1992
).
66.
E.
Geva
and
R.
Kosloff
,
Phys. Rev. E
49
,
3903
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.