The self-consistent field theory of brushes of neutral water-soluble polymers described by two-state models is formulated in terms of the effective Flory interaction parameter χeff(T,φ) that depends on both temperature, T, and the monomer volume fraction, φ. The concentration profiles, distribution of free ends and compression force profiles are obtained in the presence and in the absence of a vertical phase separation. A vertical phase separation within the layer leads to a distinctive compression force profile and a minimum in the plot of the moments of the concentration profile versus the grafting density. The analysis is applied explicitly to the Karalstrom model. The relevance to brushes of Poly(N-isopropylacrylamide)(PNIPAM) is discussed.

1.
G.
Karlstrom
,
J. Phys. Chem.
89
,
4962
(
1985
).
2.
A.
Matsuyama
and
F.
Tanaka
,
Phys. Rev. Lett.
65
,
341
(
1990
).
3.
S.
Bekiranov
,
R.
Bruinsma
, and
P.
Pincus
,
Phys. Rev. E
55
,
577
(
1997
).
4.
E.
Dormidontova
,
Macromolecules
35
,
987
(
2002
).
5.
P.-G.
de Gennes
,
C. R. Acad. Sci. II (Paris)
1117
,
313
(
1991
).
6.
P.-G. de Gennes, Simple Views on Condensed Matter (World Scientific, Singapore, 1992).
7.
P. Molyneux, Water Soluble Synthetic Polymers: Properties and Uses (CRC, Boca Raton, 1983).
8.
V. A.
Baulin
and
A.
Halperin
,
Macromolecules
35
,
6432
(
2002
).
9.
K.
Šolc
and
R.
Koningsveld
,
J. Phys. Chem.
96
,
4056
(
1992
).
10.
H.
Schäfer-Soenen
,
R.
Moerkerke
,
H.
Berghmans
,
R.
Koningsveld
,
K.
Dušek
, and
K.
Šolc
,
Macromolecules
30
,
410
(
1997
).
11.
In the N→∞ limit, this involves the coexistence of two solutions with a finite polymer concentration instead of a polymer-rich phase in contact with a neat solvent.
12.
V. A.
Baulin
and
A.
Halperin
,
Macromol. Theory Simul.
12
,
549
(
2003
).
13.
M.
Wagner
,
F.
Brochard-Wyart
,
H.
Hervet
, and
P.-G.
de Gennes
,
Colloid Polym. Sci.
271
,
621
(
1993
).
14.
P. Flory, Principles of Polymer Chemistry (Cornell University, Ithaca, NY, London, 1953).
15.
N. Schuld and B. Wolf, Polymer Handbook, 4th ed. (Wiley, New York, 1999).
16.
P. J.
Flory
,
Discuss. Faraday Soc.
49
,
7
(
1970
).
17.
R. M.
Masegosa
,
M. G.
Prolongo
, and
A.
Horta
,
Macromolecules
19
,
1478
(
1986
).
18.
(a)
I. C.
Sanchez
and
R. H.
Lacomb
,
Macromolecules
11
,
1145
(
1978
);
(b)
C.
Panayiotou
and
I. C.
Sanchez
,
J. Phys. Chem.
95
,
10090
(
1991
).
19.
(a)
K. W.
Foreman
,
K. F.
Freed
,
Adv. Chem. Phys.
103
,
335
(
1998
);
(b)
W.
Li
,
K. F.
Freed
,
A. M.
Nemirovsky
,
J. Chem. Phys.
98
,
8469
(
1993
).
20.
P.
Pincus
,
Macromolecules
24
,
2912
(
1991
).
21.
S. Safran, Statistical Thermodynamics of Surfaces and Interfaces (Addison-Wesley, New York, 1994).
22.
P.
Linse
,
Macromolecules
27
,
6404
(
1994
).
23.
M.
Björling
,
Macromolecules
25
,
3956
(
1992
).
24.
M.
Svensson
,
P.
Alexandritis
, and
P.
Linse
,
Macromolecules
32
,
637
(
1999
), and references therein.
25.
W. L.
Mattice
,
S.
Misra
, and
D. H.
Napper
,
Europhys. Lett.
28
,
603
(
1994
).
26.
(a)
P. W.
Zhu
and
D. H.
Napper
,
J. Colloid Interface Sci.
164
,
489
(
1994
);
(b)
P. W.
Zhu
and
D. H.
Napper
,
Colloids Surf., A
113
,
145
(
1996
).
27.
A.
Halperin
,
Eur. Phys. J. B
3
,
359
(
1998
).
28.
E. M.
Sevick
,
Macromolecules
31
,
3361
(
1998
).
29.
A. N.
Semenov
, Sov. Phys. JETP 61, 733 (1985), translation of
Zh. Eksp. Teor. Fiz.
88
,
1242
(
1985
).
30.
S. T.
Milner
,
Science
251
,
905
(
1991
).
31.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
,
Europhys. Lett.
5
,
413
(
1988
).
32.
A. M.
Skvortsov
,
A. A.
Gorbunov
,
V. A.
Pavlushkov
,
E. B.
Zhulina
,
O. V.
Borisov
, and
V. A.
Priamitsyn
,
Polym. Sci. U.S.S.R.
30
,
1706
(
1988
).
33.
E. B.
Zhulina
,
O. V.
Borisov
,
V. A.
Pryamitsyn
, and
T. M.
Birshtein
,
Macromolecules
24
,
140
(
1991
).
34.
This expression can be inverted as χeff(φ)=[χeff(0)−∫0φχ̄(φ)dφ]/(1−φ).
35.
J. C.
Charmet
and
P.-G.
de Gennes
,
J. Opt. Soc. Am.
73
,
1779
(
1983
).
36.
S.
Balamurugan
,
S.
Mendez
,
S. S.
Balamurugan
,
M. J.
O’Brien
II
, and
G. P.
Lopez
,
Langmuir
19
,
2545
(
2003
).
37.
F.
Afroze
,
E.
Nies
, and
H.
Berghmans
,
J. Mol. Struct.
554
,
55
(
2000
).
38.
M.
Heskins
and
J. E.
Gillet
,
J. Macromol. Sci., Chem.
2
,
1441
(
1968
).
39.
H.
Yim
,
M. S.
Kent
,
D. L.
Huber
,
S.
Satija
,
J.
Majewski
, and
G. S.
Smith
,
Macromolecules
36
,
5244
(
2003
).
40.
H. Yim, M. S. Kent, S. Mendez, S. S. Balamurugan, S. Balamurugan, G. P. Lopez, and S. Satija (unpublished).
41.
H. Yim, M. S. Kent, S. Mendez, S. S. Balamurugan, S. Balamurugan, G. P. Lopez, and S. Satija (unpublished).
42.
T.
Hu
,
Y.
You
,
C.
Pan
, and
C.
Wu
,
J. Phys. Chem. B
106
,
6659
(
2002
).
43.
The various plots involve dimensionless functions and variables. Accordingly, z stands for z/a, σ for σ/a2, etc. All calculations utilize Eq. (16) or (17) and begin with choosing φ0. This is then used to determine H and then σ. For numerical convenience the calculation of σ is carried out by using a discretized version of Eq. (16) or (17). The integral is approximated by a sum of 100 equidistant terms. It is thus difficult to control σ precisely. The σ stated values are the integer values within 0.2 of the real value.
This content is only available via PDF.
You do not currently have access to this content.