The vibrationally excited oxygen in O2(a 1Δg)–I mixture was detected by emission spectroscopy. The analysis of a luminescence spectra of oxygen molecules on O2(b 1Σg+,v)→O2(X 3Σg,v) transitions has shown that vibrationally excited O2(b 1Σg+) molecules up to v=5 are generated in the active medium of chemical oxygen–iodine laser (COIL). The highest values of relative O2(b 1Σg+,v=1) population of 22±2% and O2(b 1Σg+,v=2) of 10±3.5% are reached for I2 content in an oxygen flow ≈1%. It is shown theoretically that the relative populations of O2(X 3Σg),O2(a 1Δg), and O2(b 1Σg+) molecules at the first and the second vibrational levels are approximately equal because of fast EE energy exchange between oxygen molecules. Up to 20% of oxygen molecules in COIL active medium are vibrationally excited. Comparison of intensities of O2(b 1Σg+,v)→O2(X 3Σg,v) bands has demonstrated that a few percent of O2(b 1Σg+,v) molecules are vibrationally excited with v=3, 4, or 5. It is suggested that the following pooling reaction forms them: O2(a 1Δg,v=i)+I(2P1/2)→O2(b 1Σg+,v=i+2)+I(2P3/2), where i=1, 2, or 3.

1.
V. N.
Azyazov
,
V. S.
Safonov
, and
N. I.
Ufimtsev
,
Quantum Electron.
30
,
687
(
2000
).
2.
V. N.
Azyazov
,
V. S.
Safonov
, and
N. I.
Ufimtsev
,
Quantum Electron.
31
,
794
(
2001
).
3.
R.
Böhling
,
A. C.
Becker
,
B. F.
Minaev
,
K.
Seranski
, and
U.
Schurath
,
Chem. Phys.
142
,
445
(
1990
).
4.
M.
Macler
,
P. J.
Nicolai
, and
M. C.
Heaven
,
J. Chem. Phys.
91
,
674
(
1989
).
5.
D.
David
,
Chem. Phys. Lett.
93
,
16
(
1982
).
6.
R. F.
Heidner
III
,
C. E.
Gardner
,
G. I.
Segal
, and
T. M.
El-Sayed
,
J. Phys. Chem.
87
,
2348
(
1983
).
7.
A. V.
Komissarov
,
V.
Goncharov
, and
M. C.
Heaven
,
Proc. SPIE
4184
,
7
(
2001
).
8.
U.
Schurath
,
J. Photochem.
4
,
215
(
1975
).
9.
R. G. O.
Thomas
and
B. A.
Thrush
,
Proc. R. Soc. London, Ser. A
356
,
295
(
1977
).
10.
R. G. O.
Thomas
and
B. A.
Thrush
,
Proc. R. Soc. London, Ser. A
356
,
307
(
1977
).
11.
A. J.
Grimley
and
P. L.
Houston
,
J. Chem. Phys.
69
,
2339
(
1978
).
12.
M. H.
Van Betchem
and
S. J.
Davis
,
J. Phys. Chem.
90
,
902
(
1986
).
13.
G. E.
Hall
,
W. J.
Marinelli
, and
P. L.
Houston
,
J. Phys. Chem.
87
,
2153
(
1983
).
14.
A. S.
Biryukov
and
V. A.
Shcheglov
,
Sov. J. Quantum Electron.
16
,
333
(
1986
).
15.
V. N.
Azyazov
,
V. S.
Safonov
, and
N. I.
Ufimtsev
,
Quantum Electron.
32
,
799
(
2002
).
16.
P. H.
Krupenie
,
J. Phys. Chem. Ref. Data
1
,
423
(
1972
).
17.
H. I.
Bloemink
,
R. A.
Copeland
, and
T. G.
Slanger
,
J. Chem. Phys.
109
,
4237
(
1998
).
18.
K. S.
Kalogerakis
,
R. A.
Copeland
, and
T. G.
Slanger
,
J. Chem. Phys.
116
,
4877
(
2002
).
19.
K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, EOS Trans. Am. Geophys. Union 82, Fall Meet. Suppl. 2001 (Abstract SA41B-0728).
20.
R. G.
Derwent
and
B. A.
Thrush
,
Trans. Faraday Soc.
67
,
2036
(
1971
).
21.
R. F.
Heidner
III
,
C. E.
Gardner
,
T. M.
El-Sayed
,
G. I.
Segal
, and
J. V. V.
Kasper
,
J. Chem. Phys.
74
,
5618
(
1981
).
22.
R. G.
Aviles
,
D. F.
Muller
, and
P. L.
Houston
,
Appl. Phys. Lett.
37
,
358
(
1980
).
23.
D. H.
Burde
and
R. A.
McFarlane
,
J. Chem. Phys.
64
,
1850
(
1976
).
24.
J. I.
Cline
and
S. R.
Leone
,
J. Phys. Chem.
95
,
2917
(
1991
).
25.
E. S. Hwang, R. A. Copeland, and T. G. Slanger (unpublished).
26.
C.
Coletti
and
G. D.
Billing
,
Chem. Phys. Lett.
356
,
14
(
2002
).
27.
J. G.
Parker
and
D. N.
Ritke
,
J. Chem. Phys.
59
,
3713
(
1973
).
28.
A. B. Britan and A. M. Staric, Zh. Pricl. Mat. Tekh. Fiz. 1980, 41.
29.
M.
Lopez-Puertas
,
G.
Zaragoza
,
B. J.
Kerridge
, and
F. W.
Taylor
,
J. Geophys. Res., [Space Phys.]
100
,
9131
(
1995
).
30.
J.
Finzi
and
F. E.
Hovis
,
J. Chem. Phys.
67
,
4053
(
1977
).
31.
T. G.
Slanger
,
P. C.
Cosby
, and
D. L.
Huestis
,
J. Geophys. Res., [Space Phys.]
105
,
20557
(
2000
).
32.
B.
Minaev
,
O.
Vahtras
, and
H.
Ågren
,
Chem. Phys.
208
,
299
(
1996
).
33.
P. M.
Borrell
,
P.
Borrell
,
K. R.
Grant
, and
M. D.
Pedley
,
J. Phys. Chem.
86
,
700
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.