The single-particle and collective dynamics of hydrogen/deuterium molecules in solid hcp para-hydrogen (p-H2) and ortho-deuterium (o-D2) has been investigated by using the path integral centroid molecular dynamics (CMD) simulations at zero-pressure and 5.4 and 5.0 K, respectively. For this purpose, we have newly unified the standard CMD method with the Parrinello–Rahman–Nosé–Hoover-chain-type isothermal–isobaric technique. The phonon density of states have been obtained and the dynamic structure factors have been calculated to observe the phonon dispersion relations of both crystals. For solid p-H2, the high energy edge of the phonon energies of solid p-H2 is >13 meV, and the calculated phonon energies are significantly higher than those observed in Nielsen’s previous neutron scattering experiments in the energy region >9 meV. The relationship between the present results and the data reported so far is discussed to resolve the outstanding controversy regarding the phonon energies in solid p-H2. On the other hand, the excitation energies for solid o-D2 are in fairly good agreement with those of the neutron experiments. The calculated isothermal compressibility of solid p-H2 is found to be very close to the experimental result.

1.
G.
Ahlers
,
J. Chem. Phys.
41
,
86
(
1964
).
2.
J. P.
McTague
,
I. F.
Silvera
, and
W. N.
Hardy
,
Bull. Am. Phys. Soc.
15
,
296
(
1970
).
3.
I. F.
Silvera
,
W. N.
Hardy
, and
J. P.
McTague
,
Phys. Rev. B
4
,
1578
(
1972
).
4.
R. J.
Wijrgaarden
,
V. V.
Goldman
, and
I. F.
Silvera
,
Phys. Rev. B
27
,
5084
(
1983
).
5.
A.
Driessen
,
E.
van der Poll
, and
I. F.
Silvera
,
Phys. Rev. B
30
,
2517
(
1984
).
6.
W.
Schott
,
Z. Phys.
231
,
243
(
1970
).
7.
M.
Nielsen
and
H.
Bjerrum Møller
,
Phys. Rev. B
3
,
4383
(
1971
).
8.
M.
Nielsen
,
Phys. Rev. B
7
,
1626
(
1973
).
9.
A.
Bickermann
,
H.
Spitzer
,
H.
Stiller
,
H.
Meyer
,
R. E.
Lechner
, and
F.
Volino
,
Z. Phys. B
31
,
345
(
1978
).
10.
B. A.
Vindryaevskii
,
S. N.
Ishmayev
,
I. P.
Sadikov
,
A. A.
Chemyshey
,
Yu. L.
Shitikov
,
G. V.
Kobelev
,
V. A.
Sukhoparov
, and
A. S.
Telepnev
,
JETP Lett.
62
,
822
(
1995
).
11.
G. V.
Kobelev
,
V. A.
Sukhoparov
,
A. S.
Telepnev
,
B. A.
Vindryaevskii
,
S. N.
Ishmayev
,
I. P.
Sadikov
, and
A. A.
Chernyshov
,
High Press. Res.
14
,
111
(
1995
).
12.
S. N.
Ishmayev
,
G. V.
Kobelev
,
I. P.
Sadikov
,
V. A.
Sukhoparov
,
A. A.
Chernyshov
,
A. S.
Telepnev
,
B. A.
Vindryaevskii
, and
Y. L.
Shitikov
,
Physica B
234
,
30
(
1997
).
13.
K. N.
Klump
,
O.
Schnepp
, and
L. H.
Nosanow
,
Phys. Rev. B
1
,
2496
(
1970
).
14.
M. L.
Klein
and
R.
Koehler
,
J. Phys. C
3
,
L102
(
1970
);
M. L.
Klein
and
R.
Koehler
,
Phys. Lett.
33A
,
253
(
1970
).
15.
F. G.
Mertens
and
W.
Biem
,
Z. Phys.
250
,
273
(
1972
).
16.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
(
1994
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
);
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6184
(
1994
).
17.
S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
111
,
2357
(
1999
).
18.
A.
Calhoun
,
M.
Pavese
, and
G. A.
Voth
,
Chem. Phys. Lett.
262
,
415
(
1996
).
19.
J.
Cao
and
G. J.
Martyna
,
J. Chem. Phys.
104
,
2028
(
1996
).
20.
K.
Kinugawa
,
Chem. Phys. Lett.
292
,
454
(
1998
).
21.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
104
,
2056
(
1996
).
22.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
106
,
2400
(
1997
).
23.
U. W.
Schmitt
and
G. A.
Voth
,
J. Chem. Phys.
111
,
9361
(
1999
).
24.
S.
Jang
,
Y.
Pak
, and
G. A.
Voth
,
J. Phys. Chem. A
103
,
10289
(
1999
).
25.
M.
Pavese
,
S.
Jang
, and
G. A.
Voth
,
Parallel Comput.
26
,
1025
(
2000
).
26.
U. W.
Schmitt
and
G. A.
Voth
,
Chem. Phys. Lett.
329
,
36
(
2000
).
27.
S.
Miura
,
S.
Okazaki
, and
K.
Kinugawa
,
J. Chem. Phys.
110
,
4523
(
1999
).
28.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
106
,
1154
(
1997
).
29.
G. K.
Schenter
,
B. C.
Garett
, and
G. A.
Voth
,
J. Chem. Phys.
113
,
5171
(
2000
).
30.
K.
Kinugawa
,
P. B.
Moore
, and
M. L.
Klein
,
J. Chem. Phys.
109
,
610
(
1998
).
31.
D. R.
Reichman
,
P.-N.
Roy
,
S.
Jang
, and
G. A.
Voth
,
J. Chem. Phys.
113
,
919
(
2000
).
32.
F. J.
Bermejo
,
K.
Kinugawa
,
C.
Cabrillo
,
S. M.
Bennington
,
B.
Fåk
,
M. T.
Fernández-Dı́az
,
P.
Verkerk
,
J.
Dawidowski
, and
Fernández-Perea
,
Phys. Rev. Lett.
84
,
5359
(
2000
).
33.
V. G.
Manzhelii
,
B. G.
Udovidchenko
, and
V. B.
Esel’son
,
Sov. J. Low Temp. Phys.
1
,
384
(
1975
).
34.
G. J.
Martyna
,
M. E.
Tuckerman
,
D. J.
Tobias
, and
M. L.
Klein
,
Mol. Phys.
87
,
1117
(
1996
).
35.
(a)
M.
Parrinello
and
A.
Rahman
,
Phys. Rev. Lett.
45
,
1196
(
1980
);
(b)
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
36.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
37.
D. J.
Tobias
,
G. J.
Martyna
, and
M. L.
Klein
,
J. Phys. Chem.
97
,
12959
(
1993
).
38.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
39.
S.
Nosé
and
M. L.
Klein
,
J. Chem. Phys.
78
,
6928
(
1983
);
S.
Nosé
and
M. L.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
40.
J. B.
Sturgeon
and
B. B.
Laird
,
J. Chem. Phys.
112
,
3474
(
2000
).
41.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
42.
I. F.
Silvera
and
V. V.
Goldman
,
J. Chem. Phys.
69
,
4209
(
1978
).
43.
Y.
Kaneko
and
A.
Ueda
,
Phys. Rev. B
39
,
10281
(
1989
).
44.
S. N.
Ishmayev
,
I. P.
Sadikov
,
A. A.
Chernyshov
,
B. A.
Vindryaevskii
,
V. A.
Sukhoparov
,
A. S.
Telepnev
, and
G. V.
Kobelev
,
Sov. Phys. JETP
57
,
228
(
1983
).
45.
S. N.
Ishmayev
,
I. P.
Sadikov
,
A. A.
Chernyshov
,
B. A.
Vindryaevskii
,
V. A.
Sukhoparov
,
A. S.
Telepnev
,
G. V.
Kobelev
, and
R. A.
Sadikov
,
Sov. Phys. JETP
62
,
721
(
1985
).
46.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).
47.
As for the transverse mode calculation, the selected wave vector k is determined by following Eq. (20), so that the wave number k of selected wave vectors k is larger than one of the longitudinal modes. However, this selected wave vector k essentially indicates the same point as the wave vector for calculating the longitudinal mode spectra because of the periodicity of the reciprocal lattice vectors. In fact, the observed spectra in Fig. 5 are evidently TA and TO modes at the same wave vector point in the first Brillouin zone, and these excitation energies are in good agreement with experimental data. This coincidence of the phonon energies seen in Fig. 5 gives us support for the present computation.
This content is only available via PDF.
You do not currently have access to this content.