The photodissociation of expansion-cooled HI monomer by using 266 nm radiation yields H atoms having 12 830 and 5287 cm−1 of translational energy in the HI center-of-mass system for the I(2P3/2) and I(2P1/2) (i.e., I and I*, respectively) co-fragments. Irradiating HI clusters [i.e., (HI)n, with n=2 being the dominant cluster] with 266 nm radiation produces, among other things, some H atoms whose translational energies are peaked at 20 285 cm−1, which is 7455 cm−1 higher in energy than the more energetic of the monomer peaks. These very fast H atoms arise from sequential photodissociation within the clusters. Namely, a weakly bound I*⋅(HI)n−1 complex is first created by the photodissociation of an HI moiety within (HI)n, and then the photodissociation of a second HI moiety [within I*⋅(HI)n−1] produces a fast H atom that scatters from the nearby I*, in some cases deactivating it in the process. Thus, the latter superelastically scattered H atom acquires, as translational energy, nearly all of the I* energy (7603 cm−1). For example, for the dimer, the first dissociation event, (HI)2+hv→H+I(I*)⋅HI, is followed by I*HI+hv→Hsuperelastic+I–I. High quality potentials for the relevant HI excited states have been calculated recently, and coupling between Π0+3 (which correlates with I*) and Π1 (which correlates with I) has been shown to be due to spin–rotation interaction. There is a high degree of separability between the photodissociation of the second HI moiety and the subsequent H+I* scattering (within a given cluster). This is due mainly to the shape of the Π0+3 potential; specifically, it has a shallow well that persists to small r. The shape of the Π0+3 potential is influenced by relativity; i.e., strong spin–orbit coupling maintains the I* spherical electron density to relatively small r. The Π0+31Π transition probabilities are calculated for H+I* collisions having different values of the collisional orbital angular momentum quantum number, l, by scaling the spin–rotation matrix elements by [l(l+1)]1/2 and using the Landau–Zener model to treat the electronically nonadiabatic dynamics. It is shown that large l values (lmax=52) play a dominant role in the quenching of I* by H. For example, the partial superelastic scattering cross section is six orders of magnitude larger for l=52 than for l=1, underscoring the dramatic role of angular momentum in this system. It is noted that HI photodissociation (which is dominated by low l) proceeds almost entirely along the diabats with little transfer of flux between them, whereas H+I* intracluster “collisions” take place with sufficiently large l to facilitate the electronically nonadiabatic process.

1.
K. Balasubramanian, Relativistic Effects in Chemistry, Parts A and B (Wiley, New York, 1997).
2.
A. B.
Alekseyev
,
H. P.
Liebermann
,
D. B.
Kokh
, and
R. J.
Buenker
,
J. Chem. Phys.
113
,
6174
(
2000
).
3.
N.
Balakrishnan
,
A. B.
Alekseyev
, and
R. J.
Buenker
,
Chem. Phys. Lett.
341
,
594
(
2001
).
4.
D.
Dai
and
K.
Balasubramanian
,
J. Chem. Phys.
93
,
1837
(
1990
).
5.
K.
Balasubramanian
,
J. Chem. Phys.
89
,
5731
(
1988
).
6.
D.
Baugh
,
B.
Koplitz
,
Z.
Xu
, and
C.
Wittig
,
J. Chem. Phys.
88
,
879
(
1988
).
7.
B.
Koplitz
,
Z.
Xu
, and
C.
Wittig
,
Appl. Phys. Lett.
52
,
860
(
1988
).
8.
K. G.
Dyall
,
P. R.
Taylor
,
K.
Faegri
, and
H.
Partridge
,
J. Chem. Phys.
95
,
2583
(
1991
).
9.
J.
Müller
and
H.
Ågren
,
J. Chem. Phys.
76
,
5060
(
1982
).
10.
K.
Balasubramanian
,
J. Chem. Phys.
116
,
3568
(
2002
).
11.
K.
Sumathi
and
K.
Balasubramanian
,
J. Chem. Phys.
92
,
6604
(
1990
).
12.
K.
Balasubramanian
,
M.
Han
, and
M. Z.
Liao
,
J. Chem. Phys.
86
,
4979
(
1987
).
13.
J.
Underwood
,
D.
Chastaing
,
S.
Lee
,
P.
Boothe
,
T. C.
Flood
, and
C.
Wittig
,
Chem. Phys. Lett.
362
,
483
(
2002
).
14.
L.
Visscher
,
J.
Styszyñski
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
105
,
1987
(
1996
).
15.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
,
J. Chem. Phys.
87
,
5325
(
1987
).
16.
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
17.
E. E.
Nikitin
,
Annu. Rev. Phys. Chem.
50
,
1
(
1999
).
18.
J.
Heinrichs
,
Phys. Rev.
176
,
141
(
1968
).
19.
C.
Zhu
,
J. Chem. Phys.
105
,
4159
(
1996
).
20.
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
101
,
4855
(
1994
).
21.
C.
Zhu
and
H.
Nakamura
,
J. Chem. Phys.
102
,
7448
(
1995
).
22.
R. L.
Pastel
,
J. K.
McIver
,
H. C.
Miller
, and
G. D.
Hager
,
J. Chem. Phys.
100
,
3624
(
1994
).
23.
M. B.
Faist
and
R. B.
Bernstein
,
J. Chem. Phys.
64
,
2971
(
1976
).
24.
W. R.
Thorson
,
J. B.
Delos
, and
S. A.
Boorstein
,
Phys. Rev. A
4
,
1052
(
1971
).
25.
G. V.
Dubrovskii
,
Sov. Phys. JETP
19
,
591
(
1963
).
26.
M. Weissbluth, Atoms and Molecules (Academic, New York, 1978).
27.
C. E. Moore, Atomic Energy Levels (National Bureau of Standards, Washington, DC, 1971).
28.
E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974).
29.
E. E. Nikitin and S. Y. Umanskii, Theory of Slow Atomic Collisions (Springer-Verlag, New York, 1984).
30.
D. R.
Bates
,
Proc. R. Soc. London, Ser. A
257
,
22
(
1960
).
31.
J.
Zhang
,
M.
Dulligan
,
J.
Segall
,
Y.
Wen
, and
C.
Wittig
,
J. Phys. Chem.
99
,
13680
(
1995
).
32.
J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems, 4th ed. (Saunders College Publishing, Philadelphia, 1995).
33.
R. N.
Porter
,
J. Chem. Phys.
45
,
2284
(
1966
).
34.
J.
Segall
,
J.
Zhang
,
M.
Dulligan
,
R. A.
Beaudet
, and
C.
Wittig
,
Faraday Discuss. Chem. Soc.
97
,
195
(
1994
).
35.
A. B.
McCoy
,
Y.
Hurwitz
, and
R. B.
Gerber
,
J. Phys. Chem.
97
,
12516
(
1993
).
36.
A. T.
Pritt
and
R. D.
Coombe
,
J. Chem. Phys.
65
,
2096
(
1976
).
37.
J. S.
Zhang
,
M.
Dulligan
, and
C.
Wittig
,
J. Phys. Chem.
99
,
7446
(
1995
).
38.
T. L.
Mazely
and
M. A.
Smith
,
J. Chem. Phys.
89
,
2048
(
1988
).
39.
J. F.
Ogilvie
,
Trans. Faraday Soc.
67
,
2205
(
1971
).
40.
W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1996).
41.
T. F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, New York, 1994).
42.
L.
Schnieder
,
K.
Seekamp-Rahn
,
E.
Wrede
, and
K. H.
Welge
,
J. Chem. Phys.
107
,
6175
(
1997
).
43.
R.
Hilbig
and
R.
Wallenstein
,
IEEE J. Quantum Electron.
19
,
194
(
1983
).
44.
D. J.
Gendron
and
J. W.
Hepburn
,
J. Chem. Phys.
109
,
7205
(
1998
).
45.
H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic, Orlando, 1986).
46.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
47.
M. J. Romanelli, in Mathematical Methods for Digital Computers, edited by H. S. Wilf (Wiley, New York, 1960), p. 110.
48.
P. M.
Aker
and
J. J.
Valentini
,
J. Phys. Chem.
97
,
2078
(
1993
).
49.
A. D.
Buckingham
and
P. W.
Fowler
,
J. Mol. Struct.
189
,
203
(
1988
).
50.
Y.
Hannachi
and
B.
Silvi
,
J. Mol. Struct.: THEOCHEM
59
,
483
(
1989
).
51.
N.
Ohashi
and
A. S.
Pine
,
J. Chem. Phys.
81
,
73
(
1984
).
52.
W.
Chen
,
A. R.
Hightwalker
,
S. E.
Novick
, and
F.
Tao
,
J. Chem. Phys.
106
,
6240
(
1997
).
53.
B. J.
Howard
,
T. R.
Dyke
, and
W.
Klemperer
,
J. Chem. Phys.
81
,
5417
(
1984
).
54.
K. C.
Janda
,
J. M.
Steed
,
S. E.
Novick
, and
W.
Klemperer
,
J. Chem. Phys.
67
,
5162
(
1977
).
55.
L.-M.
Dubernet
and
J. M.
Hutson
,
J. Phys. Chem.
98
,
5844
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.