The interaction of free electrons with the potent greenhouse molecule SF5CF3 is studied under different degrees of aggregation: single molecules at collision free conditions, clusters within a supersonic molecular beam and condensed molecules. Electron collisions with single molecules are dominated by SF5 formation produced via dissociative electron attachment (DEA) within a resonance located below 2 eV. In clusters, undissociated parent anions SF5CF3 (and larger complexes containing undissociated anions) are observed in addition to the fragment ions. This indicates that (i) SF5CF3 possesses a positive adiabatic electron affinity and (b) low energy attachment is partly channeled into nondissociative processes when the molecule is coupled to an environment. Electron impact to condensed phase SF5CF3 exhibits a remarkably strong F desorption signal appearing from a pronounced resonance located at 11 eV while in the gas phase at 11 eV only a weak DEA signal is observed. Electron induced desorption from sub-monolayers of SF5CF3 on an amorphous H2O ice surface is found to be more efficient compared to desorption of SF5CF3 from a Xe surface. The implications of these results for the heterogeneous photochemistry of SF5CF3 adsorbed on ice or dust particles in the Earth’s atmosphere are discussed.

1.
W. T.
Sturges
,
T. J.
Wallington
,
M. D.
Hurley
,
K. P.
Shine
,
K.
Sihra
,
A.
Engel
,
D. E.
Oram
,
S. A.
Penkett
,
R.
Mulvaney
, and
C. A. M.
Brenninkmeijer
,
Science
289
,
611
(
2000
).
2.
R. A.
Kennedy
and
C. A.
Mayhew
,
Int. J. Mass. Spectrom.
206
,
i
(
2001
).
3.
W.
Sailer
,
H.
Drexel
,
A.
Pelc
,
V.
Grill
,
N. J.
Mason
,
E.
Illenberger
,
J. D.
Skalny
,
T.
Mikoviny
,
P.
Scheier
, and
T. D.
Märk
,
J. Chem. Phys.
351
,
71
(
2002
).
4.
L. G.
Christophorou
and
J. K.
Olthoff
,
Int. J. Mass. Spectrom.
205
,
27
(
2001
).
5.
Q.-B.
Lu
and
L.
Sanche
,
Phys. Rev. Lett.
87
,
078501
(
2001
).
6.
P.
Tegeder
,
P.
Kendall
,
M.
Penno
,
N. J.
Mason
, and
E.
Illenberger
,
Phys. Chem. Chem. Phys.
3
,
2625
(
2001
).
7.
R.
Balog
,
N. M.
Hedhili
,
F.
Bournel
,
M.
Penno
,
M.
Tronc
,
R.
Azria
, and
E.
Illenberger
,
Phys. Chem. Chem. Phys.
4
,
3350
(
2002
).
8.
A.
Stamatovic
and
G. J.
Schulz
,
Rev. Sci. Instrum.
41
,
427
(
1970
).
9.
C. L. Chen, R. E. Wotton, and P. J. Chantry, in Proceedings of the Seventh Conference of Gas Discharges and their Applications London 1982, pp. 321.
10.
CRC Handbook of Chemistry and Physics, 78th ed., edited by D. R. Lide (CRC Boca Raton, 1997).
11.
NIST Chemistry Webbook (http://webbok.nist.gov/)
12.
P. A.
Kendall
and
N. J.
Mason
,
J. Electron Spectrosc. Relat. Phenom.
120
,
27
(
2001
).
13.
P.
Limão-Vieira
,
S.
Eden
,
P. A.
Kendall
,
N. J.
Mason
,
A.
Giuliani
,
M. J.
Hubin-Franskin
,
J.
Delwiche
, and
S. V.
Hoffmann
, Chem. Phys. Lett. (to be published).
14.
B.
Gstir
,
G.
Hanel
,
J.
Fedor
,
M.
Probst
,
P.
Scheier
,
N. J.
Mason
, and
T. D.
Märk
,
J. Phys. B
35
,
2567
(
2002
).
15.
I. T.
Iakubov
and
A. G.
Khrapak
,
Rep. Prog. Phys.
45
,
697
(
1982
).
16.
M.
Rosenblit
and
J.
Jortner
,
Phys. Rev. Lett.
75
,
4079
(
1995
).
17.
W.-F. Schmidt, Liquid State Electronics of Insulating Liquids (CRC Boca Raton, 1996).
18.
M.
Meinke
and
E.
Illenberger
,
J. Phys. Chem.
98
,
6601
(
1994
).
19.
J. St.
Dixon-Warren
,
D. V.
Heyd
,
E. T.
Jensen
, and
J. C.
Polanyi
,
J. Chem. Phys.
98
,
5954
(
1993
).
20.
M.
Michaud
,
P.
Cloutier
, and
L.
Sanche
,
Phys. Rev. B
48
,
11336
(
1993
).
21.
Y.
Le Coat
,
N. M.
Hedhili
,
R.
Azria
,
M.
Tronc
,
O.
Ingólfsson
, and
E.
Illenberger
,
Chem. Phys. Lett.
296
,
208
(
1998
).
22.
E. Illenberger, Electron Attachment Processes in Free and Bound Molecules, in Photoionization and Photodetachment, Part II, pp 1063–1160. Advanced Series in Physical. Chemistry—Vol. 10B., edited by C.-Y. Ng (World Scientific, Singapore, 2000).
23.
E.
Illenberger
,
Surf. Sci.
528
,
67
(
2003
).
24.
Q.-B.
Lu
and
T. E.
Madey
,
Phys. Rev. Lett.
82
,
4122
(
1999
).
25.
Q.-B.
Lu
and
T. E.
Madey
,
J. Chem. Phys.
111
,
2861
(
1999
).
26.
J.
Langer
,
S.
Matt
,
M.
Meinke
,
P.
Tegeder
,
A.
Stamatovic
, and
E.
Illenberger
,
J. Chem. Phys.
113
,
11063
(
2000
).
27.
Q.-B.
Lu
and
L.
Sanche
,
Phys. Rev. B
63
,
153403
(
2001
).
28.
The absolute count rate critically depends on the reproducibility of many parameters, the most sensitive is the position of the sample with respect to the electron beam and the quadrupole entrance. During condensation, the sample is moved off the position where desorption spectra are recorded.
29.
R.
Azria
,
Y.
Le Coat
,
M.
Lachgar
,
M.
Tronc
,
L.
Parenteau
, and
L.
Sanche
,
Surf. Sci.
451
,
91
(
2000
).
30.
M.
Tronc
and
R.
Azria
,
Int. J. Mass. Spectrom.
205
,
325
(
2001
).
31.
P.
Rowntree
,
H.
Sambe
,
L.
Parenteau
, and
L.
Sanche
,
Phys. Rev. B
47
,
4537
(
1993
).
32.
F.
Weik
and
E.
Illenberger
,
J. Chem. Phys.
109
,
6079
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.