The variational solution of the CH2OH nuclear problem was performed by treatment of CH2OH as a planar molecule with highly anharmonic vibrations. A sophisticated dynamic model to describe the structural flexibility of CH2OH was applied. The detailed analysis of the rovibrational Hamiltonian is shown. The electron problem solution was obtained by use of the coupled cluster electron correlation technique and the augmented correlation-consistent polarized basis sets of triple- and quadruple-ζ qualities. The geometry and energy parameters were extrapolated to the complete basis set limit. The partition functions of CH2OH were calculated by the explicit summation of vibrational and rotational levels. The heat of formation of CH2OH,ΔfH(298.15 K)=−17.0±0.7 kJ/mol, was calculated by a study of the CH2OHCH2O+H reaction using the augmented basis set of quintuple-ζ quality and the relativistic and core-valence corrections of the total energies. Some structural and thermodynamic properties of CH2O are reported.

1.
A. V.
Marenich
and
J. E.
Boggs
,
J. Chem. Phys.
119
,
3098
(
2003
).
2.
P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd ed. (NRC Research, Ottawa, 1998).
3.
R. D.
Johnson
III
and
J. W.
Hudgens
,
J. Phys. Chem.
100
,
19874
(
1996
).
4.
J. M.
Dyke
,
A. R.
Ellis
,
N.
Jonathan
et al.,
Chem. Phys. Lett.
111
,
207
(
1984
).
5.
J. L.
Holmes
and
F. P.
Lossing
,
Int. J. Mass Spectrom. Ion Processes
58
,
113
(
1984
).
6.
J. A.
Seetula
and
D.
Gutman
,
J. Phys. Chem.
96
,
5401
(
1992
).
7.
B.
Ruscic
and
J.
Berkowitz
,
J. Phys. Chem.
97
,
11451
(
1993
).
8.
S.
Dóbé
,
T.
Bérces
,
T.
Turányi
et al.,
J. Phys. Chem.
100
,
19864
(
1996
).
9.
M.
Litorja
and
B.
Ruscic
,
J. Electron Spectrosc. Relat. Phenom.
97
,
131
(
1998
).
10.
S.
Parthiban
and
J. M. L.
Martin
,
J. Chem. Phys.
114
,
6014
(
2001
).
11.
R.
Janoschek
and
M. J.
Rossi
,
Int. J. Chem. Kinet.
34
,
550
(
2002
).
12.
B. Ruscic (private communication).
13.
S. J. Cyvin, Molecular Vibrations and Mean Square Amplitudes (The Norwegian Research Council for Science and the Humanities, Universitetsforlaget, 1968).
14.
R. N. Zare, Angular Momentum, Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).
15.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
et al.,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
).
16.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
17.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
,Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
);
D. E.
Woon
and
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 5/22/02, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
18.
M. E.
Jacox
,
Chem. Phys.
59
,
213
(
1981
).
19.
D. E.
Reisner
,
R. W.
Field
,
J. L.
Kinsey
, and
H.-L.
Dai
,
J. Chem. Phys.
80
,
5968
(
1984
).
20.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
21.
R. A.
Fletcher
and
G.
Pilcher
,
Trans. Faraday Soc.
66
,
794
(
1970
).
22.
NIST-JANAF Thermochemical Tables, 4th ed., edited by M. W. Chase, Jr. [J. Phys. Chem. Ref. Data Monogr. 9 (1998)].
This content is only available via PDF.
You do not currently have access to this content.