The π/π interaction (stacking) and N(B)–H/π interaction of the borazine (B3N3H6) dimer were theoretically studied. In contrast to the benzene dimer, the gauche parallel-stacked dimer of borazine was energetically minimum, and total interaction energy was about 1 kcal/mol more negative than that of the parallel-stacked dimer of benzene. The gauche parallel-stacked dimer of borazine was more stable than slipped parallel-stacked dimers and T-shape dimers. The syn parallel-stacked dimer of borazine was energetically unstable and it was less stable than the slipped syn parallel-stacked structures. The electron correlation effect at higher than the second-order Møller–Plesset (MP2) level on the molecular interaction energy was quite small. The dispersion term and the charge transfer term had large contribution in almost all the borazine dimer formations, except the syn parallel-stacked dimer. In the case of syn parallel-stacked dimer, contribution of the dispersion term was dominant. The electrostatic term had only small contribution for all the dimer formations.

1.
C. A. Hunter, K. R. Lawson, J. Perkins, and C. J. Urch, J. Chem. Soc., Perkin Trans. 2 2002, 651.
2.
E. A.
Meyer
,
R. K.
Castellano
, and
F.
Diederich
,
Angew. Chem., Int. Ed. Engl.
42
,
1210
(
2003
).
3.
G.
Karlstrom
,
P.
Linse
,
A.
Wallqvist
, and
B.
Jonsson
,
J. Am. Chem. Soc.
105
,
3777
(
1983
).
4.
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Chem. Phys.
93
,
5893
(
1990
).
5.
W. L.
Jorgensen
and
D. L.
Severance
,
J. Am. Chem. Soc.
112
,
4768
(
1990
).
6.
P.
Linse
,
J. Am. Chem. Soc.
114
,
4366
(
1992
).
7.
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Phys. Chem.
97
,
3937
(
1993
).
8.
S.
Tsuzuki
,
T.
Uchimaru
, and
K.
Tanabe
,
J. Mol. Struct.: THEOCHEM
307
,
107
(
1994
).
9.
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Am. Chem. Soc.
116
,
3500
(
1994
).
10.
S.
Tsuzuki
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
Chem. Phys. Lett.
252
,
206
(
1996
).
11.
O.
Engkvist
,
P.
Hobza
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Chem. Phys.
110
,
5758
(
1999
).
12.
S.
Tsuzuki
,
T.
Uchimaru
,
K.
Matsumura
,
M.
Mikami
, and
K.
Tanabe
,
Chem. Phys. Lett.
319
,
547
(
2000
).
13.
C.
Gonzalez
and
E. C.
Lim
,
J. Phys. Chem. A
104
,
2953
(
2000
).
14.
K. S.
Kim
,
P.
Tarakeshwar
, and
J.
Lee
,
Chem. Rev.
100
,
4145
(
2000
).
15.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
(
2002
).
16.
Y.
Shigeta
,
H.
Nagao
,
J.
Toyoda
,
Y.
Morita
,
K.
Nakasuji
,
Y.
Yoshioka
, and
K.
Yamaguchi
,
Int. J. Quantum Chem.
80
,
882
(
2000
).
17.
A.
Stock
and
E.
Pohlnd
,
Chem. Ber.
59
,
2215
(
1926
).
18.
R.
Boese
,
A. H.
Maulitz
, and
P.
Stellberg
,
Chem. Ber.
127
,
1887
(
1994
).
19.
P.
Lazzeretti
and
J. A.
Tossell
,
J. Mol. Struct.: THEOCHEM
236
,
403
(
1991
).
20.
D. L.
Cooper
,
S. C.
Wright
,
J.
Gerratt
,
P. A.
Hyams
, and
M.
Raimondi
,
J. Chem. Soc., Perkin Trans. 2
1989
,
719
.
21.
E. F.
Archibong
and
A. J.
Thakkar
,
Mol. Phys.
81
,
557
(
1994
).
22.
B.
Chiavarino
,
M. E.
Crestoni
,
A. D.
Marzio
,
S.
Fornarini
, and
M.
Rosi
,
J. Am. Chem. Soc.
121
,
11204
(
1999
).
23.
P. W.
Fowler
and
E.
Steiner
,
J. Phys. Chem. A
101
,
1409
(
1997
).
24.
E.
Steiner
,
P. W.
Fowler
, and
R. W. A.
Havenith
,
J. Phys. Chem. A
106
,
7048
(
2002
).
25.
I. D.
Madra
,
T. M.
Krygowski
, and
M. K.
Cyranski
,
Tetrahedron Lett.
54
,
14913
(
1998
).
26.
K.
Jug
,
J. Org. Chem.
48
,
1344
(
1983
).
27.
P. v. R.
Schleyer
,
H.
Jing
,
N. J. R. v. E.
Hommes
,
V. G.
Malkin
, and
O. L.
Malkina
,
J. Am. Chem. Soc.
119
,
12699
(
1997
).
28.
P. J.
Fazen
,
J. S.
Beck
,
A. T.
Lynch
,
E. E.
Remsen
, and
L. G.
Sneddon
,
Chem. Mater.
2
,
96
(
1990
).
29.
D. P.
Kim
,
C. G.
Cofer
, and
J.
Economy
,
J. Am. Chem. Soc.
78
,
1546
(
1995
).
30.
J.
Economy
,
C.
Cofer
, and
D.
Kim
,
Abstr. Pap. - Am. Chem. Soc.
211
,
118
(
1996
).
31.
Personal communication from Dr. Y. Uchimaru.
32.
S.
Tsuzuki
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Phys. Chem. A
102
,
2091
(
1998
).
33.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
34.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98 (Gaussian, Inc., Pittsburgh, PA, 1999).
35.
NBO ver. 3.1. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold.
36.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
37.
A. J. Stone, A. Dullweber, M. P. Hodges, P. L. A. Popelier, and D. J. Wales, ORIENT, a program for studying interactions between molecules version 3.2; University of Cambridge, 1995.
38.
A. J. Stone, GDMA is a program for performing distributed multipole analysis of wave functions calculated using the Gaussian program system.
39.
W.
Harshberger
,
G.
Lee
,
R. F.
Porter
, and
S. H.
Bauer
,
Inorg. Chem.
8
,
1683
(
1969
).
40.
The E2NB→πNB*) values of borazine Pgauche dimer in the MP2/6-311G** optimized structure using 6-31G*.6-31G, (Ref. 41), 6-311G** and aug(d)-6-311G* basis set were 1.48, 1.22, 1.15, and 1.17 kcal/mol, respectively. Except 6-31G* basis set, the basis set dependency of the E2 value was quite small.
41.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirly
, and
J. J.
Mantzaris
,
Chem. Phys.
89
,
2193
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.