Lithium clusters Lin(n=5 to 20) were studied by Kohn–Sham theory with local spin density and gradient-corrected energy functionals. We used a Tabu Search algorithm for structure optimization. The lowest energy Lin isomers that we found fall in two categories: (i) the pentagonal bipyramid, icosahedron, and related structures which are typical of most pair potentials, and (ii) structures containing centered square antiprisms which are reminiscent of the bulk bcc structure and have two characteristic peaks in the pair distribution function, one near 2.60 Å and the other near 3.05 Å. Calculated isomer energies and vibrational frequencies suggest that, at room temperature, many cluster sizes should show liquidlike behavior or coexistence of multiple isomers. The number of unpaired electrons “M” as a function of cluster size “n” generally alternates between 0 (singlet) and 1 (doublet), but some cluster sizes display anomalous spin magnetic moments M(n); they are M(13)=5,M(16)=2,M(17)=3, and M(18)=2. The Li7,Li8,Li19, and Li20 clusters are particularly stable: they each have a very compact structure and a shape consistent with the ellipsoidal jellium model.

1.
J. Jortner, in Physics and Chemistry of Finite Systems: From Clusters to Crystals (Kluwer, Netherlands, 1992), Vol. 1, pp. 1–17.
2.
M. D.
Morse
,
M. E.
Geusic
,
J. R.
Heath
, and
R. E.
Smalley
,
J. Chem. Phys.
83
,
2293
(
1985
).
3.
A. J.
Cox
,
J. G.
Louderback
, and
L. A.
Bloomfield
,
Phys. Rev. Lett.
71
,
923
(
1993
).
4.
S. J.
Riley
,
Ber. Bunsenges. Phys. Chem.
96
,
1104
(
1992
).
5.
M. B.
Knickelbein
,
Annu. Rev. Phys. Chem.
50
,
79
(
1999
).
6.
O.
Echt
,
K.
Sattler
, and
E.
Recknagel
,
Phys. Rev. Lett.
47
,
1121
(
1981
).
7.
W.
Miehle
,
O.
Kandler
,
T.
Leisner
, and
O.
Echt
,
J. Chem. Phys.
91
,
5940
(
1989
).
8.
J.
Farges
,
M. F.
de Feraudy
,
B.
Raoult
, and
G.
Torchet
,
Adv. Chem. Phys.
70
(part 2),
45
(
1988
).
9.
M. R.
Hoare
,
Adv. Chem. Phys.
40
,
49
(
1979
);
C. J.
Tsai
and
K. D.
Jordan
,
J. Phys. Chem.
97
,
1127
(
1993
).
10.
T. P.
Martin
,
Phys. Rep.
273
,
199
(
1996
), and references therein.
11.
P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, International Series of Monographs on Chemistry No. 30 (Clarendon, Oxford, 1995).
12.
S.
Li
,
R. J.
Van Zee
,
W.
Weltner
, Jr.
, and
K.
Raghavachari
,
Chem. Phys. Lett.
243
,
275
(
1995
).
13.
I.
Rata
,
A. A.
Shvartsburg
,
M.
Horoi
,
T.
Frauenheim
,
K. W. M.
Siu
, and
K. A.
Jackson
,
Phys. Rev. Lett.
85
,
546
(
2000
).
14.
E. C.
Honea
,
A.
Ogura
,
D. R.
Peale
,
C.
Félix
,
C. A.
Murray
,
K.
Raghavachari
,
W. O.
Sprenger
,
M. F.
Jarrold
, and
W. L.
Brown
,
J. Chem. Phys.
110
,
12161
(
1999
).
15.
H.
Kietzmann
,
J.
Morenzin
,
P. S.
Bechthold
et al.,
Phys. Rev. Lett.
77
,
4528
(
1996
).
16.
E. K.
Parks
,
L.
Zhu
,
J.
Ho
, and
S. J.
Riley
,
J. Chem. Phys.
100
,
7206
(
1994
).
17.
J.
Akola
,
M.
Manninen
,
H.
Häkkinen
,
U.
Landmann
,
X.
Li
, and
L.-S.
Wang
,
Phys. Rev. B
60
,
R11297
(
1999
).
18.
B. J.
Winter
,
E. K.
Parks
, and
S. J.
Riley
,
J. Chem. Phys.
94
,
8618
(
1991
).
19.
T. D.
Klots
,
B. J.
Winter
,
E. K.
Parks
, and
S. J.
Riley
,
J. Chem. Phys.
92
,
2110
(
1990
).
20.
E. K.
Parks
,
T. D.
Klots
,
B. J.
Winter
, and
S. J.
Riley
,
J. Chem. Phys.
99
,
5831
(
1993
).
21.
W. A.
DeHeer
,
Rev. Mod. Phys.
65
,
611
(
1993
);
M.
Brack
,
Rev. Mod. Phys.
65
,
677
(
1993
) and references therein.
22.
C.
Yannouleas
and
U.
Landman
,
Phys. Rev. B
51
,
1902
(
1995
).
23.
M.-W.
Sung
,
R.
Kawai
, and
J. H.
Weare
,
Phys. Rev. Lett.
73
,
3552
(
1994
).
24.
G.
Gardet
,
F.
Rogemond
, and
H.
Chermette
,
J. Chem. Phys.
105
,
9933
(
1996
).
25.
R.
Kawai
,
J. F.
Tombrello
, and
J. H.
Weare
,
Phys. Rev. A
49
,
4236
(
1994
);
R. Kawai, M. W. Sung, and J. H. Weare, in Physics and Chemistry of Finite Systems: From Clusters to Crystals, NATO ASI Series (Kluwer Academic, Amsterdam, 1992), Vol. 1, pp. 441–446.
26.
R.
Rousseau
and
D.
Marx
,
Phys. Rev. Lett.
80
,
2574
(
1998
).
27.
R.
Rousseau
and
D.
Marx
,
J. Chem. Phys.
111
,
5091
(
1999
).
28.
H. W.
Sarkas
,
S. T.
Arnold
,
J. H.
Hendricks
, and
K. H.
Bowen
,
J. Chem. Phys.
102
,
2653
(
1995
).
29.
B. K.
Rao
,
P.
Jena
, and
A. K.
Ray
,
Phys. Rev. Lett.
76
,
2878
(
1996
).
30.
J. Koutecký, V. Bonačić-Koutecký, I. Boustani, P. Fantucci, and W. Pewestorf, in Large Finite Systems, edited by J. Jortner and B. Pullman (Reidel, Dordrecht, 1987), pp. 303–317.
31.
V. Bonačić-Koutecký, J. Pittner, C. Fuchs, P. Fantucci, and J. Koutecký, in Physics and Chemistry of Finite Systems: From Clusters to Crystals, NATO ASI Series (Kluwer Academic, Dordrecht, 1992), Vol. 1.
32.
J.
Koutecký
,
I.
Boustani
, and
V.
Bonačić-Koutecký
,
Int. J. Quantum Chem.
38
,
149
(
1990
).
33.
J. Cheng, M.Sc. thesis, York University, 2002;
J. Cheng and R. Fournier (unpublished).
34.
R.
Rousseau
and
D.
Marx
,
Phys. Rev. A
56
,
617
(
1997
).
35.
G.
Gardet
,
F.
Rogemond
, and
H.
Chermette
,
Theor. Chim. Acta
91
,
249
(
1995
).
36.
P.
Dugourd
,
J.
Blanc
,
V.
Bonačić-Koutecký
,
M.
Broyer
,
J.
Chevaleyre
,
J.
Koutecký
,
J.
Pittner
,
J. P.
Wolf
, and
L.
Wöste
,
Phys. Rev. Lett.
67
,
2638
(
1991
).
37.
J.
Blanc
,
V.
Bonačić-Koutecký
,
M.
Broyer
,
J.
Chevaleyre
,
P.
Dugourd
,
J.
Koutecký
,
C.
Scheuch
,
J. P.
Wolf
, and
L.
Wöste
,
J. Chem. Phys.
96
,
1793
(
1992
).
38.
J. M.
Pacheco
and
J. L.
Martins
,
J. Chem. Phys.
106
,
6039
(
1997
).
39.
D.
Reichardt
,
V.
Bonačić-Koutecký
,
P.
Fantucci
, and
J.
Jellinek
,
Chem. Phys. Lett.
279
,
129
(
1997
).
40.
P.
Dugourd
,
D.
Rayane
,
P.
Labastie
,
B.
Vezin
,
J.
Chevaleyre
, and
M.
Broyer
,
Chem. Phys. Lett.
197
,
433
(
1992
).
41.
C.
Yannouleas
and
U.
Landman
,
J. Chem. Phys.
107
,
1032
(
1997
);
G.
Gardet
,
F.
Rogemond
, and
H.
Chermette
,
J. Chem. Phys.
107
,
1034
(
1997
).
42.
S.
Ishii
,
K.
Ohno
,
Y.
Kawazoe
, and
S. G.
Louie
,
Phys. Rev. B
65
,
245109
(
2002
).
43.
C.
Yannouleas
,
U.
Landman
,
C.
Bréchignac
,
P.
Cahuzac
,
B.
Concina
, and
J.
Leygnier
,
Phys. Rev. Lett.
89
,
173403
(
2002
).
44.
B. K.
Rao
,
P.
Jena
,
M.
Manninen
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
58
,
1188
(
1987
).
45.
R.
Rousseau
and
D.
Marx
,
Chem. Eur. J.
6
,
2982
(
2000
).
46.
A.
St-Amant
and
D. R.
Salahub
,
Chem. Phys. Lett.
169
,
387
(
1990
);
A. St-Amant, Ph.D. thesis, University of Montreal, 1992; deMon-KS version 3.2, M. E. Casida, C. Daul, A. Goursot, A. Koester, L. G. M. Pettersson, E. Proynov, A. St-Amant, and D. R. Salahub (principal authors), and S. Chretien, H. Duarte, N. Godbout et al. (contributing authors), deMon Software, 1998.
47.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
48.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
49.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
50.
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 10/29/02, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institue for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
51.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
52.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
46
,
12947
(
1992
);
E. I.
Proynov
,
A.
Vela
, and
D. R.
Salahub
,
Phys. Rev. A
50
,
3766
(
1994
);
E. I.
Proynov
,
E.
Ruiz
,
A.
Vela
, and
D. R.
Salahub
,
Int. J. Quant. Chem. Symp.
29
,
61
(
1995
).
53.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
54.
S.
Yanagisawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
112
,
545
(
2000
).
55.
C. J.
Barden
,
J. C.
Rienstra-Kiracofe
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
113
,
690
(
2000
).
56.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Vol. IV, Constants of Diatomic Molecules (Van Nostrand, Toronto, 1979).
57.
The Cartesian coordinates of the clusters are available upon request to R.F.
58.
D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976), p. 137, Eq. 8–33.
59.
R.
Fournier
,
J. Chem. Phys.
115
,
2165
(
2001
).
60.
Our best structure is very close to C2v, but it is actually Cs likely because of numerical errors and imperfect convergence in the geometry optimization.
61.
J. P. K.
Doye
and
D. J.
Wales
,
Science
271
,
484
(
1996
);
J. P. K.
Doye
,
D. J.
Wales
, and
R. S.
Berry
,
J. Chem. Phys.
103
,
4234
(
1995
).
62.
B. K.
Rao
,
P.
Jena
, and
M.
Manninen
,
Phys. Rev. B
32
,
477
(
1985
).
63.
M.
Solá
and
A.
Toro-Labbé
,
J. Phys. Chem. A
103
,
8847
(
1999
);
P.
Perez
and
A.
Toro-Labbé
,
J. Phys. Chem. A
104
,
1557
(
2000
).
64.
B. K.
Rao
and
P.
Jena
,
J. Chem. Phys.
111
,
1890
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.