We study the properties of molten sodium chloride in alternating electric fields of two amplitudes and for a large range of frequencies using nonequilibrium molecular dynamics simulations, and compare the responses with two different methods of temperature control to the predictions of linear response theory. We find that the considerable nonlinearity in the resulting current density observed at low frequencies can be explained by the characteristics of the nonlinear response to constant fields. We also comment on the differences in the dissipation mechanisms and the entropy change with two thermostats.

1.
J.
Delhommelle
and
J.
Petravic
,
J. Chem. Phys.
118
,
2783
(
2003
).
2.
J.
Petravic
and
J.
Delhommelle
,
J. Chem. Phys.
118
,
7477
(
2003
).
3.
J.-P.
Hansen
and
I. R.
McDonald
,
Phys. Rev. A
11
,
2111
(
1975
).
4.
J.
Trullàs
and
J. A.
Padró
,
Phys. Rev. B
55
,
12210
(
1997
).
5.
I. M.
Svishchev
and
P. G.
Kusalik
,
Phys. Chem. Liq.
26
,
237
(
1994
).
6.
S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics (Dover, New York, 1984).
7.
D. J. Evans and G. P. Morriss, Statistical Mechanics of Non-Equilibrium Liquids (Academic, London, 1990).
8.
W. G. Hoover, Computational Statistical Mechanics (Elsevier, New York, 1991).
9.
D.
MacGowan
and
D. J.
Evans
,
Phys. Rev. A
34
,
2133
(
1986
).
10.
J.
Delhommelle
,
J.
Petravic
, and
D. J.
Evans
,
Phys. Rev. E
68
,
031201
(
2003
).
11.
H. H.
Rugh
,
Phys. Rev. Lett.
78
,
772
(
1997
);
H. H.
Rugh
,
J. Phys. A
31
,
7761
(
1998
).
12.
J.
Delhommelle
and
D. J.
Evans
,
J. Chem. Phys.
115
,
43
(
2001
).
13.
L.
Lue
,
O. G.
Jepps
,
J.
Delhommelle
, and
D. J.
Evans
,
Mol. Phys.
100
,
2387
(
2002
).
14.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
31
(
1964
).
15.
Y.
Guissani
and
B.
Guillot
,
J. Chem. Phys.
101
,
490
(
1994
).
16.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
17.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
18.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
19.
R. Zwanzig, Non-equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
This content is only available via PDF.
You do not currently have access to this content.