Using the polymer integral equation method, we study the solution properties of charged quasi-random two-letter (HP) copolymers with two different types of distribution of monomer units along a copolymer chain: proteinlike copolymers and random-block copolymers. The copolymers consist of monomer units of two types: associating electroneutral hydrophobic (H) units and charged (P) units. Small mobile counterions are treated explicitly. We explore the influence of the primary structure of HP-polyelectrolyte chains on their structural behavior and aggregation in a solution, which is poor for H units and good for P units. Analysis of the static structure factors shows that there is an evident tendency to the aggregation of the hydrophobic groups belonging to different macromolecules into spatially correlated clusters. The spinodal lines and various structure diagrams are calculated for both copolymers. The characteristic temperature of counterion condensation is also estimated. The main finding is that charged proteinlike copolymers are more prone to self-organization in a poor solvent than their random-block counterparts. In particular, the apparent spinodal temperatures for proteinlike copolymers are several fold larger than for random-block copolymers with the same average block length and HP composition. The influence of the primary structure is more pronounced in the processes dominated by short-range hydrophobic interaction than in the processes mostly governed by long-range electrostatic interactions.

1.
P.
Arrigo
,
P.
Fariselli
, and
R.
Casadio
,
Gene
221
,
65
(
1998
).
2.
J. M.
Barral
and
H. F.
Epstein
,
BioEssays
21
,
813
(
1999
).
3.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Proc. Natl. Acad. Sci. U.S.A.
90
,
7195
(
1993
).
4.
E. I.
Shakhnovich
,
Folding Des.
3
,
R
-
45
(
1998
).
5.
V. S.
Pande
,
A. Yu.
Grosberg
, and
T. J.
Tanaka
,
Rev. Mod. Phys.
72
,
259
(
2000
).
6.
A. R.
Khokhlov
and
P. G.
Khalatur
,
Physica A
249
,
253
(
1998
).
7.
A. R.
Khokhlov
and
P. G.
Khalatur
,
Phys. Rev. Lett.
82
,
3456
(
1999
).
8.
E. A.
Zheligovskaya
,
P. G.
Khalatur
, and
A. R.
Khokhlov
,
Phys. Rev. E
59
,
3071
(
1999
).
9.
E. N.
Govorun
,
V. A.
Ivanov
,
A. R.
Khokhlov
,
P. G.
Khalatur
,
A. L.
Borovinsky
, and
A. Yu.
Grosberg
,
Phys. Rev. E
64
,
040903
(
2001
).
10.
P. G.
Khalatur
,
V. V.
Novikov
, and
A. R.
Khokhlov
,
Phys. Rev. E
67
,
051901
(
2003
).
11.
A. V.
Berezkin
,
P. G.
Khalatur
, and
A. R.
Khokhlov
,
J. Chem. Phys.
118
,
8049
(
2003
).
12.
J.
Virtanen
,
C.
Baron
, and
H.
Tenhu
,
Macromolecules
33
,
336
(
2000
).
13.
V. I.
Lozinskii
,
I. A.
Simenel
,
E. A.
Kurskaya
,
V. A.
Kulakova
,
V. Ya.
Grinberg
,
A. S.
Dubovik
,
I. Yu.
Galaev
,
B.
Mattiasson
, and
A. R.
Khokhlov
,
Dokl. Chem.
375
,
273
(
2000
).
14.
P.-O.
Wahlund
,
I. Yu.
Galaev
,
S. A.
Kazakov
,
V. I.
Lozinsky
, and
B.
Mattiasson
,
Macromol. Biosci.
2
,
33
(
2002
).
15.
Levy Flights and Related Topics in Physics, edited by M. F. Shlesinger, G. M. Zaslavskii, and U. Frisch, Lecture Notes in Physics (Springer-Verlag, Berlin, 1996).
16.
G. H.
Fredrickson
and
F. S.
Bates
,
Annu. Rev. Mater. Sci.
26
,
501
(
1996
).
17.
F. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1996
).
18.
L. V.
Zherenkova
,
S. K.
Talitskikh
,
P. G.
Khalatur
, and
A. R.
Khokhlov
,
Dokl. Phys. Chem.
382
,
23
(
2002
).
19.
K. S.
Schweizer
and
J. G.
Curro
,
Phys. Rev. Lett.
58
,
246
(
1987
);
J. G.
Curro
and
K. S.
Schweizer
,
Macromolecules
20
,
1928
(
1987
);
J. G.
Curro
and
K. S.
Schweizer
,
J. Chem. Phys.
87
,
1842
(
1987
).
20.
K. S.
Schweizer
and
J. G.
Curro
,
Adv. Polym. Sci.
116
,
319
(
1995
);
K. S.
Schweizer
and
J. G.
Curro
,
Adv. Chem. Phys.
98
,
1
(
1997
).
21.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
22.
A.
Yethiraj
and
C.-Y.
Shew
,
Phys. Rev. Lett.
77
,
3937
(
1996
).
23.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
106
,
5706
(
1997
).
24.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
109
,
5162
(
1998
).
25.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
110
,
11
599
(
1999
).
26.
M.
Dymitrowska
and
L.
Belloni
,
J. Chem. Phys.
109
,
4659
(
1998
).
27.
M.
Dymitrowska
and
L.
Belloni
,
J. Chem. Phys.
111
,
6633
(
1999
).
28.
L.
Harnau
and
P.
Reineker
,
J. Chem. Phys.
112
,
437
(
2000
).
29.
T.
Hofmann
,
R. G.
Winkler
, and
P.
Reineker
,
J. Chem. Phys.
114
,
10181
(
2001
).
30.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
113
,
8841
(
2000
).
31.
T.
Hofmann
,
R. G.
Winkler
, and
P.
Reineker
,
J. Chem. Phys.
118
,
6624
(
2003
).
32.
L.
Zherenkova
,
P.
Khalatur
, and
K.
Yoshikawa
,
Macromol. Theory Simul.
12
,
339
(
2003
).
33.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
114
,
2830
(
2001
).
34.
C.-Y.
Shew
and
A.
Yethiraj
,
J. Chem. Phys.
116
,
5308
(
2002
).
35.
E. F.
David
and
K. S.
Schweizer
,
Macromolecules
30
,
5118
(
1997
).
36.
M.
Guenza
and
K. S.
Schweizer
,
Macromolecules
30
,
4205
(
1997
).
37.
K. A.
Kolbet
and
K. S.
Schweizer
,
Macromolecules
33
,
1425
(
2000
).
38.
I. V.
Makeeva
,
S. K.
Talitskikh
, and
P. G.
Khalatur
,
Polym. Sci., Ser. A Ser. B
43
,
1297
(
2001
).
39.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1976).
40.
F.
Hirata
,
B. M.
Pettit
, and
P. J.
Rossky
,
J. Chem. Phys.
77
,
509
(
1982
);
P. J.
Rossky
and
B. M.
Pettit
,
J. Chem. Phys.
77
,
1451
(
1982
);
F.
Hirata
,
P. J.
Rossky
, and
B. M.
Pettit
,
J. Chem. Phys.
78
,
4133
(
1983
).
41.
J. S.
Høye
and
G.
Stell
,
J. Chem. Phys.
65
,
18
(
1976
);
D. E.
Sullivan
and
C. G.
Gray
,
Mol. Phys.
42
,
443
(
1981
).
42.
P. J.
Cummings
and
G.
Stell
,
Mol. Phys.
44
,
529
(
1981
);
P. J.
Cummings
and
G.
Stell
,
Mol. Phys.
46
,
383
(
1982
).
43.
P. J.
Rossky
and
B. M.
Pettit
,
Chem. Phys. Lett.
190
,
626
(
1992
);
P. J.
Rossky
and
B. M.
Pettit
,
J. Chem. Phys.
97
,
7656
(
1992
).
44.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
112
,
10391
(
2000
).
45.
F. O.
Raineri
and
G.
Stell
,
J. Phys. Chem.
105
,
11
880
2001
).
46.
K. S.
Schweizer
and
J. G.
Curro
,
J. Chem. Phys.
91
,
5059
(
1989
);
K. S.
Schweizer
and
J. G.
Curro
,
Chem. Phys.
149
,
105
(
1990
).
47.
K. S.
Schweizer
and
A.
Yethiraj
,
J. Chem. Phys.
98
,
9053
(
1993
);
A.
Yethiraj
and
K. S.
Schweizer
,
J. Chem. Phys.
98
,
9080
(
1993
).
48.
D.
Laria
,
D.
Wu
, and
D.
Chandler
,
J. Chem. Phys.
95
,
4444
(
1991
).
49.
L.
Harnau
and
J.-P.
Hansen
,
J. Chem. Phys.
116
,
9051
(
2002
).
50.
A. V.
Dobrynin
and
M.
Rubinstein
,
Macromolecules
32
,
915
(
1999
);
A. V.
Dobrynin
and
M.
Rubinstein
,
Macromolecules
34
,
1964
(
2001
).
51.
T. A.
Waigh
,
R.
Ober
,
C. E.
Williams
, and
J.-C.
Galin
,
Macromolecules
34
,
1973
(
2001
).
52.
M. D.
Carbajal-Tinoco
,
R.
Ober
,
I.
Dolbnya
,
W.
Bras
, and
C. E.
Williams
,
J. Phys. Chem. B
106
,
12
165
2002
).
53.
R.
Chang
and
A.
Yethiraj
,
J. Chem. Phys.
118
,
6634
(
2003
).
54.
C.
Holm
,
H. J.
Limbach
, and
K.
Kremer
,
J. Phys.: Condens. Matter
15
,
S
-
205
(
2003
).
55.
V. Yu.
Borue
and
I. Ya.
Erukhimovich
,
Sov. Phys. Dokl.
31
,
146
(
1986
);
V. Yu.
Borue
and
I. Ya.
Erukhimovich
,
Macromolecules
21
,
3240
(
1988
).
56.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
57.
D.
Schwahn
,
K.
Mortense
, and
Y.
Yee-Madeira
,
Phys. Rev. Lett.
58
,
1544
(
1987
);
H. P.
Deutsch
and
K.
Binder
,
Macromolecules
25
,
6214
(
1992
);
J.
Huh
,
H.
Angerman
, and
G.
ten Brinke
,
Macromolecules
29
,
6328
(
1996
).
58.
L.
Belloni
,
J. Chem. Phys.
98
,
8080
(
1993
);
P. G.
Ferreira
,
R. L.
Carvalho
,
M. M.
Telo da Gama
, and
A. G.
Schlijper
,
J. Chem. Phys.
101
,
594
(
1994
).
59.
G. S.
Manning
,
J. Chem. Phys.
51
,
924
(
1969
).
60.
F. Oosawa, Polyelectrolytes (Dekker, New York, 1971).
61.
K.-C.
Ng
,
J. Chem. Phys.
61
,
2680
(
1974
).
62.
P. J.
Rossky
and
H. L.
Freidman
,
J. Chem. Phys.
72
,
5694
(
1980
).
63.
T.
Ichiye
and
D. J.
Haymet
,
J. Chem. Phys.
89
,
4315
(
1988
).
64.
J. S.
Høye
,
E.
Lomba
, and
G.
Stell
,
Mol. Phys.
75
,
1217
(
1992
).
65.
Yu. A.
Kriksin
,
P. G.
Khalatur
, and
A. R.
Khokhlov
,
Mat. Model.
10
,
112
(
1998
).
66.
P. G.
Khalatur
and
A. R.
Khokhlov
,
J. Chem. Phys.
112
,
4849
(
2000
).
67.
P. G.
Khalatur
,
S. K.
Talitskikh
, and
A. R.
Khokhlov
,
Macromol. Theory Simul.
11
,
566
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.