The isotropic–nematic phase behavior of length-polydisperse hard rods with arbitrary length distributions is calculated. Within a numerical treatment of the polydisperse Onsager model using the Gaussian trial function ansatz we determine the onset of isotropic–nematic phase separation, coming from a dilute isotropic phase and a dense nematic phase. We focus on parent systems whose lengths can be described by either a Schulz or a “fat-tailed” log-normal distribution with appropriate lower and upper cutoff lengths. In both cases, very strong fractionation effects are observed for parent polydispersities larger than roughly 50%. In these regimes, the isotropic and nematic phases are completely dominated by, respectively, the shortest and the longest rods in the system. Moreover, for the log-normal case, we predict triphasic isotropic–nematic–nematic equilibria to occur above a certain threshold polydispersity. By investigating the properties of the coexisting phases across the coexistence region for a particular set of cutoff lengths we show that the region of stable triphasic equilibria does not extend up to very large parent polydispersities but closes off at a consolute point located not far above the threshold polydispersity. The experimental relevance of the phenomenon is discussed.

1.
H.
Zocher
,
Z. Anorg. Allg. Chem.
147
,
91
(
1925
).
2.
I.
Langmuir
,
J. Chem. Phys.
6
,
873
(
1938
).
3.
J. D.
Bernal
and
I.
Fankuchen
,
Nature (London)
139
,
923
(
1937
).
4.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
51
,
627
(
1949
).
5.
A.
Wierenga
,
T. A. J.
Lenstra
, and
A. P.
Philipse
,
Colloids Surf., A
134
,
359
(
1998
).
6.
P. A.
Buining
,
C.
Pathmamanoharan
,
J. B. H.
Jansen
, and
H. N. W.
Lekkerkerker
,
J. Am. Ceram. Soc.
74
,
1303
(
1991
).
7.
H. N. W.
Lekkerkerker
,
P.
Coulon
,
R.
van der Hagen
, and
R.
Deblieck
,
J. Chem. Phys.
80
,
3427
(
1984
).
8.
T.
Odijk
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
89
,
2090
(
1985
).
9.
T. M.
Birshtein
,
B. I.
Kolegov
, and
V. A.
Pryamitsin
,
Polym. Sci. U.S.S.R.
30
,
316
(
1988
).
10.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem. B
97
,
3601
(
1993
).
11.
R.
van Roij
and
B.
Mulder
,
J. Chem. Phys.
105
,
11237
(
1996
).
12.
R.
van Roij
,
B.
Mulder
, and
M.
Dijkstra
,
Physica A
261
,
374
(
1998
).
13.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
Colloids Surf., A
130
,
405
(
1997
).
14.
H. H.
Wensink
,
G. J.
Vroege
, and
H. N. W.
Lekkerkerker
,
J. Phys. Chem. B
105
,
10610
(
2001
).
15.
T. J.
Sluckin
,
Liq. Cryst.
1
,
111
(
1989
).
16.
Z. Y.
Chen
,
Phys. Rev. E
50
,
2849
(
1994
).
17.
A.
Speranza
and
P.
Sollich
,
J. Chem. Phys.
117
,
5421
(
2002
).
18.
A.
Speranza
and
P.
Sollich
,
J. Chem. Phys.
118
,
5213
(
2003
).
19.
A.
Speranza
and
P.
Sollich
,
Phys. Rev. E
67
,
061702
(
2003
).
20.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
Rep. Prog. Phys.
55
,
1241
(
1992
).
21.
T.
Odijk
,
Liq. Cryst.
1
,
97
(
1986
).
22.
R.
van Roij
and
B. M.
Mulder
,
Europhys. Lett.
34
,
201
(
1996
).
23.
S.
Fraden
,
G.
Maret
, and
D. L. D.
Caspar
,
Phys. Rev. E
48
,
2816
(
1993
).
24.
N.
Donkai
,
K.
Kajiwara
,
M.
Schmidt
, and
T.
Miyamoto
,
Makromol. Chem.
14
,
611
(
1993
).
25.
P. A.
Buining
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
97
,
11510
(
1993
).
26.
T.
Itou
and
A.
Teramoto
,
Macromolecules
17
,
1419
(
1984
).
27.
K.
Kajiwara
,
N.
Donkai
,
Y.
Hiragi
, and
H.
Inagaki
,
Makromol. Chem.
187
,
2883
(
1986
).
28.
P. A.
Buining
,
Y. S. J.
Veldhuizen
,
C.
Pathmamanoharan
, and
H. N. W.
Lekkerkerker
,
Colloids Surf., A
64
,
47
(
1992
).
29.
J.
Herzfeld
,
A. E.
Berger
, and
J. W.
Wingate
,
Macromolecules
17
,
1718
(
1984
).
30.
P.
Sollich
,
P. B.
Warren
, and
M. E.
Cates
,
Adv. Chem. Phys.
116
,
265
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.