Model calculations to investigate the deuteron quadrupolar relaxation in liquid water are performed. Techniques not amenable to experiment, such as switching on and off the intermolecular or intramolecular electric field gradients and simulating rigid liquid water, give insight into the microscopic effects leading to relaxation. In experimental studies it is usually assumed that the deuteron quadrupolar relaxation is governed largely by the reorientational motion of an average electric field gradient, and the error in this assumption is readily extracted from the model calculations. As expected, this error is significant for deuterons in hydrogen bonds. These model calculations should provide a guide to better understanding of quadrupolar relaxation and experimental evaluation of relaxation.

1.
B. C.
Gordalla
and
M. D.
Zeidler
,
Mol. Phys.
59
,
817
(
1986
).
2.
R.
Eggenberger
,
S.
Gerber
,
H.
Huber
,
D.
Searles
, and
M.
Welker
,
J. Chem. Phys.
97
,
5898
(
1992
).
3.
R.
Eggenberger
,
S.
Gerber
,
H.
Huber
,
D.
Searles
, and
M.
Welker
,
Mol. Phys.
80
,
1177
(
1993
).
4.
R.
Eggenberger
,
S.
Gerber
,
H.
Huber
, and
M.
Welker
,
Chem. Phys.
177
,
91
(
1993
).
5.
R.
Eggenberger
,
S.
Gerber
,
H.
Huber
,
D.
Searles
, and
M.
Welker
,
J. Comput. Chem.
14
,
1553
(
1993
).
6.
H.
Huber
,
Z. Naturforsch. A
49
,
103
(
1994
).
7.
B.
Kirchner
,
E.
Ermakova
,
G.
Steinebrunner
,
A. J.
Dyson
, and
H.
Huber
,
Mol. Phys.
94
,
257
(
1998
).
8.
M.
Holz
,
R.
Haselmeier
,
A. J.
Dyson
, and
H.
Huber
,
Phys. Chem. Chem. Phys.
2
,
1717
(
2000
).
9.
A.
Halkier
,
B.
Kirchner
,
H.
Huber
, and
M.
Jaszunski
,
Chem. Phys.
253
,
183
(
2000
).
10.
B.
Kirchner
,
D. J.
Searles
,
A. J.
Dyson
,
P. S.
Vogt
, and
H.
Huber
,
J. Am. Chem. Soc.
122
,
5379
(
2000
).
11.
M. G.
Müller
,
B.
Kirchner
,
P. S.
Vogt
,
H.
Huber
, and
D. J.
Searles
,
Chem. Phys. Lett.
346
,
160
(
2001
).
12.
H.
Huber
,
B.
Kirchner
, and
D. J.
Searles
,
J. Mol. Liq.
98–99
,
71
(
2002
).
13.
D. J. Searles and H. Huber, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 2002), Vol. 9, pp. 215.
14.
W. L.
Jorgensen
,
J.
Chandrasehkar
, and
J. D.
Madura
,
J. Chem. Phys.
79
,
926
(
1983
).
15.
L. X.
Dang
and
B. M.
Pettitt
,
J. Phys. Chem.
91
,
3349
(
1987
).
16.
S. E.
Feller
,
R. W.
Pastor
,
A.
Rojnuckarin
,
S.
Bogusz
, and
B. R.
Brooks
,
J. Phys. Chem.
100
,
17011
(
1996
).
17.
Note that in our earlier work (Refs. 2,3,4,5 10) the DQCC was defined as usual as DQCC2=(eQ/h)2〈VzzP(0)2 where VzzP is the largest component of the efg tensor in its principal axis system, so its relationship with the relaxation time is 1/T1=32π2DQCC2(1+η2/3)τefg. In the case of water, where the asymmetry is very small, the difference in the values of DQCC obtained using these different definitions will be very small.
18.
A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance (Harper & Row, London, 1967).
19.
H.
Huber
,
Chem. Phys. Lett.
112
,
133
(
1984
).
20.
H.
Huber
,
J. Mol. Struct.: THEOCHEM
121
,
207
(
1985
).
21.
R.
Bhattacharjee
,
J. S.
Muenter
, and
M. D.
Marshall
,
J. Mol. Spectrosc.
145
,
302
(
1991
).
22.
L.
Olsen
,
O.
Christiansen
,
L.
Hemmingsen
,
S. P. A.
Sauer
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
116
,
1424
(
2002
).
23.
P. L.
Cummins
,
G. B.
Bacskay
,
N. S.
Hush
,
B.
Halle
, and
S.
Engström
,
J. Chem. Phys.
82
,
2002
(
1985
).
24.
E. H.
Hardy
,
R.
Witt
,
A.
Dölle
, and
M. D.
Zeidler
,
J. Magn. Reson.
134
,
300
(
1998
).
25.
E. H.
Hardy
,
A.
Zygar
, and
M. D.
Zeidler
,
Z. Phys. Chem. (Munich)
214
,
1633
(
2000
).
26.
W. T.
Huntress
,
Adv. Magn. Reson.
4
,
1
(
1970
).
27.
E. H.
Hardy
,
A.
Zygar
,
M. D.
Zeidler
,
M.
Holz
, and
F. D.
Sacher
,
J. Chem. Phys.
114
,
3174
(
2001
).
28.
I. M.
Svishchev
and
P. G.
Kusalik
,
J. Phys. Chem.
98
,
728
(
1994
).
29.
P.
Mark
and
L.
Nilsson
,
J. Phys. Chem. A
105
,
9954
(
2001
).
30.
H. L. Friedman, in Molecular Motions in Liquids, edited by J. Lascombe (Reidel, Dodrecht, 1974), p. 87.
This content is only available via PDF.
You do not currently have access to this content.