The ammonia dimer (NH3)2 has been investigated using high-level ab initio quantum chemistry methods and density functional theory. The structure and energetics of important isomers are obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed Cs symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by as much as ≈20°. In addition, the so-called cyclic C2h structure, resulting from further bending which leads to two equivalent “hydrogen bonding contacts,” is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available [generalized gradient approximation (GGA), meta-GGA, and hybrid] density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, which is designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to, e.g., the widely used BLYP functional. This improved generalized gradient approximation functional is employed in Car–Parrinello ab initio molecular dynamics simulations of liquid ammonia to judge its performance in describing the associated liquid. Both the HCTH407+ and BLYP functionals describe the properties of the liquid well as judged by analysis of radial distribution functions, hydrogen bonding structure and dynamics, translational diffusion, and orientational relaxation processes. It is demonstrated that the solvation shell of the ammonia molecule in the liquid phase is dominated by steric packing effects and not so much by directional hydrogen bonding interactions. In addition, the propensity of ammonia molecules to form bifurcated and multifurcated hydrogen bonds in the liquid phase is found to be negligibly small.

1.
W.
Kohn
,
Rev. Mod. Phys.
71
,
1253
(
1999
);
J. A.
Pople
,
Angew. Chem., Int. Ed. Engl.
38
,
1894
(
1999
);
J. A.
Pople
,
Angew. Chem.
111
,
2014
(
1999
).
2.
A. K.
Rappé
and
E. R.
Bernstein
,
J. Phys. Chem. A
104
,
6117
(
2000
).
3.
T.
van Mourik
and
R. J.
Gdanitz
,
J. Chem. Phys.
116
,
9620
(
2002
).
4.
M.
Kamiya
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
117
,
6010
(
2002
).
5.
K.
Laasonen
,
F.
Csajka
, and
M.
Parrinello
,
Chem. Phys. Lett.
194
,
172
(
1992
).
6.
F.
Sim
,
A.
St.-Amant
,
I.
Papai
, and
D. R.
Salahub
,
J. Am. Chem. Soc.
114
,
4391
(
1992
).
7.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
8.
K.
Laasonen
,
M.
Parrinello
,
R.
Car
,
C.
Lee
, and
D.
Vanderbilt
,
Chem. Phys. Lett.
207
,
208
(
1993
).
9.
M. E.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Phys. Chem.
99
,
5749
(
1995
);
M. E.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
103
,
150
(
1995
).
10.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1995
).
11.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
);
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
12.
P. L.
Silvestrelli
,
M.
Bernasconi
, and
M.
Parrinello
,
Chem. Phys. Lett.
277
,
478
(
1997
).
13.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature (London)
397
,
601
(
1999
).
14.
M.
Boero
,
K.
Terakura
,
T.
Ikeshoji
,
C. C.
Liew
, and
M.
Parrinello
,
Phys. Rev. Lett.
85
,
3245
(
2000
);
M.
Boero
,
K.
Terakura
,
T.
Ikeshoji
,
C. C.
Liew
, and
M.
Parrinello
,
J. Chem. Phys.
115
,
2219
(
2001
).
15.
E.
Schwegler
,
G.
Galli
, and
F.
Gygi
,
Phys. Rev. Lett.
84
,
2429
(
2000
).
16.
E.
Schwegler
,
G.
Galli
,
F.
Gygi
, and
R. Q.
Hood
,
Phys. Rev. Lett.
87
,
265501
(
2001
).
17.
A. D.
Boese
,
N. L.
Doltsinis
,
N. C.
Handy
, and
M.
Sprik
,
J. Chem. Phys.
112
,
1670
(
2000
).
18.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature (London)
417
,
925
(
2002
).
19.
M.
Krack
,
A.
Gambirasio
, and
M.
Parrinello
,
J. Chem. Phys.
117
,
9409
(
2002
).
20.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
21.
B.
Paizs
and
S.
Suhai
,
J. Comput. Chem.
19
,
575
(
1998
).
22.
C.
Tuma
,
A. D.
Boese
, and
N. C.
Handy
,
Phys. Chem. Chem. Phys.
1
,
3939
(
1999
), note that the HCTH/120 functional is denoted HCTH-38 in this paper.
23.
K. N.
Rankin
and
R. J.
Boyd
,
J. Comput. Chem.
22
,
1590
(
2001
).
24.
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
116
,
9559
(
2002
).
25.
D. D.
Nelson
, Jr.
,
G. T.
Fraser
, and
W.
Klemperer
,
Science
238
,
1670
(
1987
).
26.
M. Havenith, Infrared Spectroscopy of Molecular Clusters (Springer, Verlag, Berlin, 2002), see in particular Chap. 9.
27.
W.
Klopper
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
F. B.
van Duijneveldt
,
Phys. Chem. Chem. Phys.
2
,
2227
(
2000
);
see in particular the last line of Table 1.
28.
T.
Steiner
,
Angew. Chem., Int. Ed. Engl.
41
,
48
(
2002
),
T.
Steiner
,
Angew. Chem.
114
,
50
(
2002
).
29.
Note that we adopt here Steiner’s terminology (Ref. 28): (i) in a hydrogen bond D-HA the group 𝒟-H is called the (proton) donor and 𝒜 is called the (proton) acceptor;
(ii) the interaction of one donor with two or more acceptors A,A,… leads to so-called bifurcated D-HAA or multifurcated hydrogen bonds. Note that sometime the cyclic C2h structure of (NH3)2 according to Fig. 1(e) is also termed “bifurcated,” which we do not do here.
30.
R.
Preißner
,
U.
Egner
, and
W.
Saenger
,
FEBS Lett.
288
,
192
(
1991
).
31.
Z.
Latajka
and
S.
Scheiner
,
J. Chem. Phys.
81
,
407
(
1984
).
32.
M. J.
Frisch
,
J. E.
Del Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
33.
S.
Liu
,
C. E.
Dykstra
,
K.
Kolenbrander
, and
J. M.
Lisy
,
J. Chem. Phys.
85
,
2077
(
1986
).
34.
K.
Hirao
,
T.
Fujikawa
,
H.
Konishi
, and
S.
Yamabe
,
Chem. Phys. Lett.
104
,
184
(
1984
).
35.
K. P.
Sagarik
,
R.
Ahlrichs
, and
S.
Brode
,
Mol. Phys.
57
,
1247
(
1986
).
36.
Z.
Latajka
and
S.
Scheiner
,
J. Chem. Phys.
84
,
341
(
1986
).
37.
D. D.
Nelson
, Jr.
,
G. T.
Fraser
, and
W.
Klemperer
,
J. Chem. Phys.
83
,
6201
(
1985
).
38.
F.-M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
99
,
5976
(
1993
).
39.
D. M.
Hassett
,
C. J.
Marsden
, and
B. J.
Smith
,
Chem. Phys. Lett.
183
,
449
(
1991
).
40.
M.
Havenith
,
R. C.
Cohen
,
K. L.
Busarow
,
D. H.
Gwo
,
Y. T.
Lee
, and
R. J.
Saykally
,
J. Chem. Phys.
94
,
4776
(
1991
).
41.
M.
Havenith
,
H.
Linnartz
,
E.
Zwart
,
A.
Kips
,
J. J.
ter Meulen
, and
W. L.
Meerts
,
Chem. Phys. Lett.
193
,
261
(
1992
).
42.
J. G.
Loeser
,
C. A.
Schmuttenmaer
,
R. C.
Cohen
,
M. J.
Elrod
,
D. W.
Steyert
,
R. J.
Saykally
,
R. E.
Bumgarner
, and
G. A.
Blake
,
J. Chem. Phys.
97
,
4727
(
1992
).
43.
R. J.
Saykally
and
G. A.
Blake
,
Science
259
,
1570
(
1993
).
44.
H.
Linnartz
,
A.
Kips
,
W. L.
Meerts
, and
M.
Havenith
,
J. Chem. Phys.
99
,
2449
(
1993
).
45.
N.
Heineking
,
W.
Stahl
,
E. H. T.
Olthof
,
P. E. S.
Wormer
, and
M.
Havenith
,
J. Chem. Phys.
102
,
8693
(
1995
).
46.
H.
Linnartz
,
W. L.
Meerts
, and
M.
Havenith
,
Chem. Phys.
193
,
327
(
1995
).
47.
G.
Cotti
,
H.
Linnartz
,
W. L.
Meerts
,
A.
van der Avoird
, and
E. H. T.
Olthof
,
J. Chem. Phys.
104
,
3898
(
1996
).
48.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
101
,
8430
(
1994
).
49.
E. H. T.
Olthof
,
A.
van der Avoird
,
P. E. S.
Wormer
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
101
,
8443
(
1994
).
50.
Note that the results for the 18-dimensional equilibrium structure of the ammonia dimer reported in Ref. 48 were obtained by (i) keeping the structure of the NH3 monomers rigid, (ii) solving the remaining six-dimensional vibration–rotation–tunneling problem on a global potential energy surface, and (iii) adjusting some parameters of this ab initio-based potential in order to match the observed far-infrared spectrum (Ref. 42). Note that recent work on the water dimer (Ref. 51) showed that monomer flexibility does play a significant role in determining the vibration–rotation–tunneling spectrum of this dimer. The intramolecular degrees of freedom of the monomers are also expected to play a role in determining the “experimental” structure of the ammonia dimer.
51.
C.
Leforestier
,
F.
Gatti
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
117
,
8710
(
2002
).
52.
M.
Behrens
,
U.
Buck
,
R.
Fröchtenicht
,
M.
Hartmann
, and
M.
Havenith
,
J. Chem. Phys.
107
,
7179
(
1997
).
53.
J. S.
Lee
and
S. Y.
Park
,
J. Chem. Phys.
112
,
230
(
2000
).
54.
J.
Stalring
,
M.
Schütz
,
R.
Lindh
,
G.
Karlström
, and
P.-O.
Widmark
,
Mol. Phys.
100
,
3389
(
2002
).
55.
W.
Klopper
and
H. P.
Lüthi
,
Mol. Phys.
96
,
559
(
1999
).
56.
T. H.
Zhu
and
W. T.
Yang
,
Int. J. Quantum Chem.
49
,
613
(
1994
).
57.
M.
Kieninger
and
S.
Suhai
,
J. Comput. Chem.
17
,
1508
(
1996
).
58.
B. S.
Jursic
,
J. Mol. Struct.: THEOCHEM
434
,
29
(
1998
).
59.
M.
Diraison
,
G. J.
Martyna
, and
M. E.
Tuckerman
,
J. Chem. Phys.
111
,
1096
(
1999
).
60.
I.
Olovsson
and
D. H.
Templeton
,
Acta Crystallogr.
12
,
832
(
1959
).
61.
R.
Boese
,
N.
Niederprüm
,
D.
Bläser
,
A.
Maulitz
,
M. Y.
Antipin
, and
P. R.
Mallinson
,
J. Phys. Chem. B
101
,
5794
(
1997
).
62.
J. S.
Loveday
,
R. J.
Nelmes
,
W. G.
Marshall
,
J. M.
Besson
,
S.
Klotz
, and
G.
Hamel
,
Phys. Rev. Lett.
76
,
74
(
1996
).
63.
A. D.
Fortes
,
J. P.
Brodholt
,
I. G.
Wood
, and
L.
Vocadlo
,
J. Chem. Phys.
118
,
5987
(
2003
).
64.
A. H.
Narten
,
J. Chem. Phys.
49
,
1692
(
1968
);
A. H.
Narten
,
J. Chem. Phys.
66
,
3117
(
1977
).
65.
P.
Chieux
and
H.
Bertagnolli
,
J. Phys. Chem.
88
,
3726
(
1984
).
66.
M. A.
Ricci
,
M.
Nardone
,
F. P.
Ricci
,
C.
Andreani
, and
A. K.
Soper
,
J. Chem. Phys.
102
,
7650
(
1995
).
67.
W. L.
Jorgensen
and
M.
Ibrahim
,
J. Am. Chem. Soc.
102
,
3309
(
1979
).
68.
R. H.
Kincald
and
H. A.
Scheraga
,
J. Phys. Chem.
86
,
833
(
1982
).
69.
R. W.
Impey
and
M. L.
Klein
,
Chem. Phys. Lett.
104
,
579
(
1984
).
70.
S. V.
Hannongbua
,
T.
Ishida
,
E.
Spohr
, and
K.
Heinzinger
,
Z. Naturforsch., A: Phys. Sci.
43
,
572
(
1988
).
71.
J.
Gao
,
X.
Xia
, and
T. F.
George
,
J. Phys. Chem.
97
,
9241
(
1993
).
72.
M.
Kiselev
,
T.
Kerdcharoen
,
S.
Hannongbua
, and
K.
Heinzinger
,
Chem. Phys. Lett.
327
,
425
(
2000
).
73.
T. A.
Beu
and
U.
Buck
,
J. Chem. Phys.
114
,
7848
(
2001
);
see also
T. A.
Beu
and
U.
Buck
,
J. Chem. Phys.
114
,
7853
(
2001
).
74.
S.
Hannongbua
,
J. Chem. Phys.
113
,
4707
(
2000
).
75.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
76.
D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst (NIC, FZ Jülich, 2000);
for downloads see www.theochem.ruhr-uni-bochum.de/go/cprev.html
77.
Y.
Liu
and
M. E.
Tuckerman
,
J. Phys. Chem. B
105
,
6598
(
2001
).
78.
R. N.
Barnett
and
U.
Landman
,
Phys. Rev. B
48
,
2081
(
1993
).
79.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
80.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
81.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
82.
A. D.
Boese
and
N. C.
Handy
,
J. Chem. Phys.
114
,
5497
(
2001
).
83.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
21
,
5469
(
1980
).
84.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
85.
E. H.
Lieb
and
S.
Oxford
,
Int. J. Quantum Chem.
19
,
427
(
1981
).
86.
G. K.-L.
Chan
and
N. C.
Handy
,
Phys. Rev. A
59
,
3075
(
1999
).
87.
J. P.
Perdew
and
K.
Burke
,
Int. J. Quantum Chem.
57
,
309
(
1996
).
88.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
89.
G.
Menconi
,
P. J.
Wilson
, and
D. J.
Tozer
,
J. Chem. Phys.
114
,
3958
(
2001
).
see also supplementary material to Ref. 82, EPAPS Document No. E-JCPSA6-301111.
91.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
92.
J. M. L.
Martin
and
G.
De Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
93.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
94.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning et al.
95.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
96.
S.
Parthiban
and
J. M. L.
Martin
,
J. Chem. Phys.
114
,
6014
(
2001
).
97.
M. B. Sullivan, M. A. Iron, P. C. Redfern, J. M. L. Martin, L. A. Curtiss, and L. Radom, J. Phys. Chem. A (to be published).
98.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
),
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
erratum
89
,
3401
(
1988
).
99.
J. F. Stanton, J. Gauss, J. D. Watts, W. Lauderdale, and R. J. Bartlett (1996) ACES II, an ab initio program system, incorporating the MOLECULE vectorized molecular integral program by J. Almlöf and P. R. Taylor, and a modified version of the ABACUS integral derivative package by T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor.
100.
S. A.
Kucharski
and
R. J.
Bartlett
,
Chem. Phys. Lett.
158
,
550
(
1989
);
K.
Raghavachari
,
J. A.
Pople
,
E. S.
Replogle
, and
M.
Head-Gordon
,
J. Phys. Chem.
94
,
5579
(
1990
).
101.
R. A.
Chiles
and
C. E.
Dykstra
,
J. Chem. Phys.
74
,
4544
(
1981
).
102.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
103.
M. J. Frisch et al., GAUSSIAN 98, Revision A.11, Gaussian, Inc., Pittsburgh, PA, 1998.
104.
The Cambridge Analytic Derivatives Package (Cadpac), Issue 6.5, Cambridge (1998). Developed by R. D. Amos with contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell et al.,
105.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
106.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
107.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
108.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
),
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
109.
P. J.
Wilson
,
T. J.
Bradley
, and
D. J.
Tozer
,
J. Chem. Phys.
115
,
9233
(
2001
).
110.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
298
,
113
(
1998
).
111.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
112.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
113.
CPMD Program, J. Hutter, A. Alavi, T. Deutsch, M. Bernasconi, St. Goedecker, D. Marx, M. Tuckerman, and M. Parrinello, MPI für Festkörperforschung and IBM Zurich Research Laboratory.
114.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev. A
140
,
1133
(
1965
).
115.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
116.
E.
Tsuchida
,
Y.
Kanada
, and
M.
Tsukada
,
Chem. Phys. Lett.
311
,
236
(
1999
).
117.
W.
Klopper
,
M.
Quack
, and
A.
Suhm
,
J. Chem. Phys.
108
,
10096
(
1998
).
118.
C. J.
Wormald
and
B.
Wurzberger
,
J. Chem. Thermodyn.
33
,
1193
(
2001
).
119.
J. M. L.
Martin
,
Chem. Phys. Lett.
242
,
343
(
1995
).
120.
See EPAPS Document No. E-JCPSA6-119-305335 for Tables I–III for different weights in order to determine the HCTH407+ functional to give the correct description of bonding in the ammonia dimer.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
121.
The experimental RDFs that are plotted in Fig. 3 were derived from the diffraction data of Ref. 66 but using a more sophisticated procedure;
A. K. Soper (private communication).
122.
A.
Geiger
,
F. H.
Stillinger
, and
A.
Rahman
,
J. Chem. Phys.
70
,
4185
(
1979
).
123.
A.
Luzar
and
D.
Chandler
,
Phys. Rev. Lett.
76
,
928
(
1996
);
A.
Luzar
and
D.
Chandler
,
Nature (London)
379
,
53
(
1996
);
A.
Luzar
,
J. Chem. Phys.
113
,
10663
(
2000
).
124.
H.
Xu
and
B. J.
Berne
,
J. Phys. Chem. B
105
,
11929
(
2001
);
H.
Xu
,
H. A.
Stern
, and
B.
Berne
,
J. Phys. Chem. B
106
,
2054
(
2002
).
125.
F. W.
Starr
,
J. K.
Nielsen
, and
H. E.
Stanley
,
Phys. Rev. Lett.
82
,
2294
(
1999
);
F. W.
Starr
,
J. K.
Nielsen
, and
H. E.
Stanley
,
Phys. Rev. E
62
,
579
(
2000
).
126.
A.
Chandra
,
Phys. Rev. Lett.
85
,
768
(
2000
).
127.
S.
Balasubramanian
,
S.
Pal
, and
B.
Bagchi
,
Phys. Rev. Lett.
89
,
115505
(
2002
).
128.
M.
Ferrario
,
M.
Haughney
,
I. R.
McDonald
, and
M. L.
Klein
,
J. Chem. Phys.
93
,
5156
(
1990
).
129.
F. H.
Stillinger
,
Adv. Chem. Phys.
31
,
1
(
1975
);
F. H.
Stillinger
,
Science
209
,
451
(
1980
).
130.
J.
Kroon
and
J. A.
Kanters
,
Nature (London)
248
,
667
(
1974
).
131.
D. E.
O’Reilly
,
E. M.
Peterson
, and
C. E.
Scheie
,
J. Chem. Phys.
58
,
4072
(
1973
).
132.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
Mol. Phys.
46
,
513
(
1982
);
see in particular Sec. 5.
133.
E. H.
Hardy
,
A.
Zygar
,
M. D.
Zeidler
,
M.
Holz
, and
F. D.
Sacher
,
J. Chem. Phys.
114
,
3174
(
2001
).
134.
M.
Haughney
,
M.
Ferrario
, and
I. R.
McDonald
,
J. Phys. Chem.
91
,
4934
(
1987
).
135.
R. D.
Mountain
,
J. Chem. Phys.
103
,
3084
(
1995
).
136.
D. C.
Rapaport
,
Mol. Phys.
50
,
1151
(
1983
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.