The weakly bound cyclic trimer (H2O)2HBr was observed in supersonic expansion and its rotational spectrum was measured in the region 3.6–17.7 GHz by cavity Fourier-transform microwave spectroscopy. Rotational, centrifugal distortion constants, and inertial and principal hyperfine splitting constants were determined for seven isotopomers of (H2O)2HBr. In addition to the large bromine hyperfine splitting each rotational transition exhibits a fine vibrational splitting into four components, at relative intensities consistent with expectations from the G8 group classification of the vibration–rotation–tunneling motions in the trimer. The associated four low-lying states are either very close together or well below the inversion barriers, since the differences between their rotational constants are all below 0.02%. The experimental moments of inertia were used to determine rs,r0,rz, and rm(1L) geometries, in all of which the heavy atom distances are considerably shorter than similar distances in H2O–HBr and (H2O)2. An improved analysis of the measured electric dipole moment of (H2O)2HBr is reported, and all experimental results are confronted with predictions from ab initio calculations.

1.
J. P.
Devlin
,
N.
Uras
,
J.
Sadlej
, and
V.
Buch
,
Nature (London)
417
,
269
(
2002
).
2.
S. M.
Hurley
,
T. E.
Dermota
,
D. P.
Hydutsky
, and
A. W.
Castleman
, Jr.
,
Science
298
,
202
(
2002
).
3.
S. M.
Hurley
,
T. E.
Dermota
,
D. P.
Hydutsky
, and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
118
,
9272
(
2003
).
4.
S.
Re
,
Y.
Osamura
,
Y.
Suzuki
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
109
,
973
(
1998
).
5.
A.
Milet
,
C.
Struniewicz
,
R.
Moszynski
, and
P. E.
Wormer
,
J. Chem. Phys.
115
,
349
(
2001
).
6.
A. C.
Legon
and
L. C.
Willoughby
,
Chem. Phys. Lett.
95
,
449
(
1983
).
7.
Z.
Kisiel
,
B. A.
Pietrewicz
,
P. W.
Fowler
,
A. C.
Legon
, and
E.
Steiner
,
J. Phys. Chem. A
104
,
6970
(
2000
).
8.
Z.
Kisiel
,
E.
Białkowska-Jaworska
,
L.
Pszczółkowski
,
A.
Milet
,
C.
Struniewicz
,
R.
Moszynski
, and
J.
Sadlej
,
J. Chem. Phys.
112
,
5767
(
2000
).
9.
Z.
Kisiel
,
J.
Kosarzewski
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
,
Chem. Phys. Lett.
325
,
523
(
2000
).
10.
M.
Weimann
,
M.
Fárnik
, and
M. A.
Suhm
, PCCP 4, 3933 (2002).
11.
A. J.
Huneycutt
,
R. J.
Stickland
,
F.
Heidelberg
, and
R. J.
Saykally
,
J. Chem. Phys.
118
,
1221
(
2003
).
12.
M.
Fárnik
,
M.
Weimann
, and
M. A.
Suhm
,
J. Chem. Phys.
118
,
10120
(
2003
).
13.
A.
Milet
,
C.
Struniewicz
,
R.
Moszynski
, and
P. E. S.
Wormer
,
Theor. Chem. Acc.
104
,
195
(
2000
).
14.
A.
Milet
,
C.
Struniewicz
,
R.
Moszynski
,
J.
Sadlej
,
Z.
Kisiel
,
E.
Białkowska-Jaworska
, and
L.
Pszczółkowski
,
Chem. Phys.
271
,
267
(
2001
).
15.
P. E. S.
Wormer
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Chem. Phys.
115
,
3604
(
2001
).
16.
C.
Struniewicz
,
T.
Korona
,
R.
Moszynski
, and
A.
Milet
,
Chem. Phys.
343
,
588
(
2001
).
17.
M. F.
Rode
and
J.
Sadlej
,
Chem. Phys. Lett.
368
,
754
(
2003
).
18.
A. C.
Legon
and
A. P.
Suckley
,
Chem. Phys. Lett.
150
,
153
(
1988
).
19.
B. A. Pietrewicz, O. Desyatnyk, Z. Kisiel, A. C. Legon, and L. Pszczółkowski (unpublished).
20.
Z.
Kisiel
,
J.
Kosarzewski
, and
L.
Pszczółkowski
,
Acta Phys. Pol. A
92
,
507
(
1997
).
21.
L. H.
Coudert
,
F. J.
Lovas
,
R. D.
Suenram
, and
J. T.
Hougen
,
J. Chem. Phys.
87
,
6290
(
1987
).
22.
L.
Martinache
,
S.
Jans-Bürli
,
B.
Vogelsanger
,
W.
Kresa
, and
A.
Bauder
,
Chem. Phys. Lett.
149
,
424
(
1988
).
23.
F. J. Lovas and R. D. Suenram, personal communication.
24.
M. R.
Keenan
,
E. J.
Campbell
,
T. J.
Balle
,
L. W.
Buxton
,
T. K.
Minton
,
P. D.
Soper
, and
W. H.
Flygare
,
J. Chem. Phys.
72
,
3070
(
1980
).
25.
Z.
Kisiel
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
,
Acta Phys. Pol. A
101
,
231
(
2002
).
26.
Z.
Kisiel
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
,
J. Chem. Phys.
117
,
8248
(
2002
).
27.
Z.
Kisiel
,
E.
Białkowska-Jaworska
,
O.
Desyatnyk
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
,
J. Mol. Spectrosc.
208
,
113
(
2001
).
28.
J.
Gadhi
,
A.
Lahrouni
,
J.
Legrand
, and
J.
Demaison
,
J. Chim. Phys. Phys.-Chim. Biol.
92
,
1984
(
1995
).
29.
J.
Gadhi
,
G.
Wlodarczak
,
J.
Legrand
, and
J.
Demaison
,
Chem. Phys. Lett.
156
,
401
(
1989
).
30.
Z. Kisiel, PROSPE—Programs for ROtational SPEctroscopy, available at http://info.ifpan.edu.pl/∼kisiel/prospe.htm
31.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
32.
Alex A. Granovsky, PC-GAMESS program, available at http://classic.chem.msu.su/gran/gamess/index.html
33.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
et al.
J. Comput. Chem.
14
,
1347
(
1993
).
34.
J. K. G. Watson, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, p.1.
35.
H. M.
Pickett
,
J. Mol. Spectrosc.
148
,
371
(
1991
).
36.
See EPAPS Document No. E-JCPSA6-119-014336 for Tables S1-S3 of measured rotational transition frequencies for seven isotopomers of (H2O)2HBr, and Table S4 of principal coordinates for the determined geometries.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
37.
O. B.
Dabbousi
,
W. L.
Meerts
,
F. H.
de Leeuw
, and
A.
Dymanus
,
Chem. Phys.
2
,
473
(
1973
).
38.
A.
Halkier
,
M.
Jaszunski
, and
P.
Jorgensen
,
Phys. Chem. Chem. Phys.
1
,
4165
(
1999
).
39.
S. E.
Novick
,
P.
Davies
,
S. J.
Harris
, and
W.
Klemperer
,
J. Chem. Phys.
59
,
2273
(
1973
).
40.
Z.
Kisiel
,
E.
Białkowska-Jaworska
, and
L.
Pszczółkowski
,
J. Chem. Phys.
109
,
10263
(
1998
).
41.
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
42.
C. C.
Costain
,
Trans. Am. Crystallogr. Assoc.
2
,
157
(
1966
).
43.
R. H. Schwendeman, in Critical Evaluation of Chemical and Physical Information, edited by D. R. Lide and M. A. Paul (National Academy of Sciences, Washington, D.C., 1974).
44.
P.
Jensen
,
S. A.
Tashkun
, and
Vl. G.
Tyuterev
,
J. Mol. Spectrosc.
168
,
271
(
1994
).
45.
F. C.
De Lucia
,
P.
Helminger
, and
W.
Gordy
,
Phys. Rev. A
3
,
1849
(
1971
).
46.
F. C.
De Lucia
,
P.
Helminger
,
R. L.
Cook
, and
W.
Gordy
,
Phys. Rev. A
5
,
487
(
1972
).
47.
W. Gordy and R. L. Cook, Microwave Molecular Spectra (Wiley, New York, 1984), Chap. XIII, pp. 706–714.
48.
J. K. G.
Watson
,
A.
Roytburg
, and
W.
Ulrich
,
J. Mol. Spectrosc.
196
,
102
(
1999
).
49.
Z.
Kisiel
,
J. Mol. Spectrosc.
218
,
58
(
2003
).
50.
S. L.
Shostak
,
W. L.
Ebenstein
, and
J. S.
Muenter
,
J. Chem. Phys.
94
,
5875
(
1991
).
51.
F. A.
Van Dijk
and
A.
Dymanus
,
Chem. Phys. Lett.
5
,
387
(
1970
).
52.
A. J.
Stone
,
Chem. Phys. Lett.
83
,
233
(
1981
).
53.
K.
Ruud
,
P.-O.
Åstrand
, and
P. R.
Taylor
,
J. Chem. Phys.
112
,
2668
(
2000
).
54.
D. M.
Bishop
and
P.
Norman
,
J. Chem. Phys.
111
,
3042
(
1999
).
55.
J. K.
Gregory
,
D. C.
Clary
,
K.
Liu
,
M. G.
Brown
, and
R. J.
Saykally
,
Science
275
,
814
(
1997
).
56.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
57.
Z.
Kisiel
,
B. A.
Pietrewicz
, and
L.
Pszczółkowski
,
Chem. Phys. Lett.
333
,
381
(
2001
).
58.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
,
J. Chem. Phys.
66
,
498
(
1977
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.