This paper presents the linear response (LR) function for a multiconfigurational self-consistent field (MCSCF) molecular wave function for the integral equation formalism version of the polarizable continuum model (PCM). Both equilibrium and nonequilibrium PCM solvation schemes are described: The nonequilibrium scheme is applied to the calculation of excited state wave functions (Franck–Condon states) and/or of dynamic response properties. An important characteristic of the LR-PCM-MCSCF theory is the explicit inclusion of the effects of solvent dynamics, and this allows us to treat a large variety of time-dependent phenomena. Here, in particular, the theory is applied to the study of the solvent effect on transition energies and on static and dynamic polarizabilities of para-nitroaniline (pNA). The study of the polarizability dispersion of pNA is performed for the ground state and for low-lying electronic excited states including the charge transfer state. We compare our results with available experimental and theoretical data.

1.
(a)
E.
Cancès
and
B.
Mennucci
,
J. Math. Chem.
23
,
309
(
1998
);
(b)
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
);
(c)
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
2.
(a)
S.
Miertus
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
55
,
117
(
1981
);
(b)
R.
Cammi
and
J.
Tomasi
,
J. Comput. Chem.
16
,
1449
(
1995
).
3.
R.
Cammi
,
B.
Mennucci
,
K.
Ruud
,
L.
Frediani
,
K. V.
Mikkelsen
, and
J.
Tomasi
,
J. Chem. Phys.
117
,
13
(
2002
).
4.
R.
Cammi
and
B.
Mennucci
,
J. Chem. Phys.
110
,
9877
(
1999
).
5.
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Phys. Chem. A
104
,
5631
(
2000
).
6.
(a)
R.
Cammi
,
M.
Cossi
, and
J.
Tomasi
,
J. Chem. Phys.
104
,
4611
(
1996
);
(b)
R.
Cammi
,
M.
Cossi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
105
,
10556
(
1996
).
7.
(a)
Y.
Ooshika
,
J. Phys. Soc. Jpn.
9
,
594
(
1954
);
(b)
R.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
);
(c)
E. G.
McRae
,
J. Phys. Chem.
61
,
562
(
1957
);
(d)
S.
Basu
,
Adv. Quantum Chem.
1
,
145
(
1964
);
(e)
V. G.
Levich
,
Adv. Electrochem. Electrochem. Eng.
4
,
249
(
1966
) for older studies;
and (f)
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
93
,
5194
(
1990
);
H. J.
Kim
and
J. T.
Hynes
,
J. Chem. Phys.
93
,
5211
(
1990
);
(g)
A. M.
Berezhkosvskii
,
Chem. Phys.
164
,
331
(
1992
);
(h)
M. V.
Basilevski
and
G. E.
Chudinov
,
Chem. Phys.
144
,
155
(
1990
);
(i)
M. A.
Aguilar
,
F. J.
Olivares del Valle
, and
J.
Tomasi
,
J. Chem. Phys.
98
,
7375
(
1993
);
(j)
R.
Cammi
and
J.
Tomasi
,
Int. J. Quantum Chem., Quantum Chem. Symp.
29
,
465
(
1995
);
(k)
K. V.
Mikkelsen
,
A.
Cesar
,
H.
Ågren
, and
H. J. A.
Jensen
,
J. Chem. Phys.
103
,
9010
(
1995
);
(l)
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
,
J. Chem. Phys.
109
,
2798
(
1998
;) for more recent ones.
8.
R.
Cammi
and
J.
Tomasi
,
Int. J. Quantum Chem.
60
,
297
(
1996
).
9.
Equation (6) refers to the case of an unperturbed state equilibrated with all components of the solvent reaction field. However, we can also consider the case of an unperturbed state corresponding to a nonequilibrium solvation state. Usually, such reference states are obtained by a fast transition from a reference state 0P〉, and the corresponding solute–solvent interaction operator is given by Vσρ(Ψ̄)=J+Xin0P)+Xd(Ψ̄), where Xin0P) represent the interaction with the inertial charges induced by the parent state.
10.
B. T. Pickup, “Response to a time-dependent perturbation,” in Handbook of Molecular Physics and Quantum Chemistry (Wiley, Chichester, 2003), Vol. 3, p. 1.
11.
J.
Olsen
and
P.
Jørgensen
,
J. Chem. Phys.
82
,
3235
(
1985
).
12.
(a)
K. V.
Mikkelsen
,
Y.
Luo
,
H.
Ågren
, and
P.
Jørgensen
,
J. Chem. Phys.
100
,
8240
(
1994
);
(b)
K. V.
Mikkelsen
and
K. O.
Sylvester-Hvid
,
J. Phys. Chem.
100
,
9116
(
1996
).
13.
K. V.
Mikkelsen
,
P.
Jørgensen
,
K.
Ruud
, and
T.
Helgaker
,
J. Chem. Phys.
106
,
1170
(
1997
).
14.
(a)
B.
Mennucci
,
R.
Cammi
, and
J.
Tomasi
,
J. Chem. Phys.
110
,
6858
(
1999
);
(b)
R.
Cammi
,
J. Chem. Phys.
109
,
3185
(
1998
);
(c)
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
110
,
7627
(
1999
).
15.
T. Helgaker, H. J. A. Jensen, P. Jørgensen et al., DALTON, an ab initio electronic structure program, Release 1.2. See http://www.kjemi.uio.no/software/dalton/dalton.html (2001).
16.
S. P.
Karna
,
P. N.
Prasad
, and
M.
Dupuis
,
J. Chem. Phys.
94
,
1171
(
1991
).
17.
(a)
C.
Daniel
and
M.
Dupuis
,
Chem. Lett.
171
,
209
(
1990
);
(b)
F.
Sim
,
S.
Chin
,
M.
Dupuis
, and
J. E.
Rice
,
J. Phys. Chem.
97
,
1158
(
1993
).
18.
B.
Champagne
,
Chem. Phys. Lett.
261
,
57
(
1996
).
19.
S. D.
Bella
,
G.
Lanza
,
I.
Fragala
,
Sh.
Yitzchaik
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
119
,
3003
(
1997
).
20.
J. L.
Bredas
and
F.
Meyers
,
Nonlinear Opt.
1
,
119
(
1991
).
21.
(a)
O. S.
Khalil
,
C. J.
Seliskar
, and
S. P.
McGlynn
,
J. Chem. Phys.
58
,
1607
(
1973
);
(b) W. Liptay, in Excited States, edited by E. C. Lim (Academic, New York, 1974), Vol. 1, p. 129;
(c)
M.
Harrand
,
J. Raman Spectrosc.
2
,
15
(
1974
);
M.
Harrand
,
J. Raman Spectrosc.
4
,
53
(
1975
);
(d)
T. P.
Carsey
,
G. L.
Findley
, and
S. P.
McGlynn
,
J. Am. Chem. Soc.
101
,
4502
(
1979
).
22.
Experimental x-ray data show that the ground state geometry is not perfectly planar due to the slightly wagged amino group. However, test calculations indicated that the use of the constrained C2v optimized geometry only has a minor influence on the calculated properties.
23.
R. Cammi, L. Frediani, K. Ruud, and B. Mennucci (unpublished).
24.
S.
Millefiori
,
G.
Favini
,
A.
Millefiori
, and
D.
Grasso
,
Spectrochim. Acta, Part A
33A
,
21
(
1977
).
25.
(a)
J. N.
Woodford
,
M. A.
Pauley
, and
C. H.
Wang
,
J. Phys. Chem. A
101
,
1989
(
1997
);
(b)
C. L.
Tomsen
,
J.
Thøgersen
, and
S. R.
Keiding
,
J. Phys. Chem. A
102
,
1062
(
1998
);
(c)
S. A.
Kovalenko
,
R.
Schanz
,
V. M.
Farztdinov
,
H.
Hennig
, and
N. P.
Ernsting
,
Chem. Phys. Lett.
322
,
200
(
2000
);
(d)
S. A.
Kovalenko
,
A. L.
Dobryakov
,
J.
Ruthmann
, and
N. P.
Ernsting
,
Phys. Rev. A
59
,
2369
(
1999
).
26.
H.
Ågren
,
O.
Vahtras
,
H.
Koch
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
98
,
6417
(
1993
).
27.
D.
Jonsson
,
P.
Norman
,
H.
Ågren
,
Y.
Luo
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
J. Chem. Phys.
109
,
6351
(
1998
).
28.
R.
Wortmann
,
P.
Kramer
,
C.
Glania
,
S.
Lebus
, and
N.
Detzer
,
Chem. Phys.
173
,
99
(
1993
).
29.
A. M.
Moran
and
A. M.
Kelley
,
J. Chem. Phys.
115
,
912
(
2001
).
30.
(a)
W.
Liptay
,
G.
Walz
,
W.
Baumann
,
H.-J.
Schlosser
,
H.
Deckers
, and
N.
Detzer
,
Z. Naturforsch. A
26A
,
2020
(
1971
);
(b)
S. A.
Locknar
and
L. A.
Peteanu
,
J. Phys. Chem. B
102
,
4240
(
1998
).
31.
G. U.
Bublitz
and
S. G.
Boxer
,
Annu. Rev. Phys. Chem.
48
,
213
(
1997
).
32.
(a)
W.
Schuddeboom
,
S. A.
Jonker
,
J. M.
Warman
,
M. P.
de Haas
,
M. J. W.
Vermeulen
,
W. F.
Jager
,
B.
de Lange
,
B. L.
Feringa
, and
R. W.
Fessenden
,
J. Am. Chem. Soc.
115
,
3286
(
1993
);
(b)
G. H.
Gelinck
,
J. J.
Piet
,
B. R.
Wegewijs
,
K.
Mullen
,
J.
Wildeman
,
G.
Hadziioannou
, and
J. M.
Warman
,
Phys. Rev. B
62
,
1489
(
2000
);
(c)
J. J.
Piet
,
P. N.
Taylor
,
H. L.
Anderson
,
A.
Osuka
, and
J. M.
Warman
,
J. Am. Chem. Soc.
122
,
1749
(
2000
).
33.
K.
Ruud
,
L.
Frediani
,
R.
Cammi
, and
B.
Mennucci
,
Int. J. Mol. Sci.
4
,
119
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.