Dissociation of acetaldehyde in moderate strong laser field of 1013–1014W/cm2 was investigated. Singly charged parent ion CH3CHO+ and fragmental ions CH3+,CHO+,C2H4+,O+,CH2CHO+, and H+ were produced by 800 nm laser of 100 fs pulse duration and recorded by time-of-flight mass spectrometer. The CH3+ fragment further dissociated to CH2+,CH+, and C+ ions at higher intensity. Ab initio calculated results show that the singly-, doubly-, and triply charged parent ions are stable. So, the dissociation mechanism was not due to Coulomb explosion of multicharged ion. A field-assisted dissociation (FAD) theory, which assumes that only one bond undergoes dissociation while the rest of the molecular geometry stays unchanged, was employed to treat the dissociation dynamics. Accordingly, the dressed potential energy surfaces of the ground state for the parent and the fragment ions were calculated. Corresponding quasiclassical trajectory calculations show that the bond ruptures take place in the order of C–C, C–O, and C–H, agreeing with the observation. The observed angular dependence and charge distribution of the product ions can also be interpreted by the FAD theory.

1.
G. S.
Hurst
and
V. S.
Letokhov
,
Phys. Today
47
,
38
(
1994
).
2.
P. H.
Bucksbaum
,
A.
Zavriyev
,
H. G.
Muller
, and
D. W.
Schumacher
,
Phys. Rev. Lett.
64
,
1883
(
1990
).
3.
J. E.
Decker
,
G.
Xu
, and
S. L.
Chin
,
J. Phys. B
24
,
L281
(
1991
).
4.
K.
Vijayalakshmi
,
V. R.
Bhardwaj
,
C. P.
Safvan
, and
D.
Mathur
,
J. Phys. B
30
,
L339
(
1997
).
5.
E.
Constant
,
H.
Stapelfeldt
, and
P. B.
Corkum
,
Phys. Rev. Lett.
76
,
4140
(
1996
).
6.
K.
Vijayalakshmi
,
V. R.
Bhardwaj
, and
D.
Mathur
,
J. Phys. B
30
,
4065
(
1997
).
7.
Ch.
Ellert
,
H.
Stapelfeldt
,
E.
Constant
,
H.
Sakai
,
J.
Wright
,
D. M.
Rayner
, and
P. B.
Corkum
,
Philos. Trans. R. Soc. London, Ser. A
356
,
329
(
1998
).
8.
A.
Iwamae
,
A.
Hishikawa
, and
K.
Yamanouchi
,
J. Phys. B
33
,
223
(
2000
).
9.
S.
Chelkowski
and
A. D.
Bandrauk
,
J. Phys. B
28
,
L723
(
1995
).
10.
K. W.
Ledingham
,
D. J.
Smith
,
R. P.
Singhal
,
T. C.
McCanny
,
P.
Graham
,
H. S.
Kilick
,
W. X.
Peng
,
A. J.
Langley
,
P. F.
Taday
, and
C.
Kosmidis
,
J. Phys. Chem. A
103
,
2952
(
1999
).
11.
J. H.
Posthumus
,
J.
Plumridge
,
M. K.
Thomas
,
K.
Codling
,
L. J.
Frasinski
,
A. J.
Langley
, and
P. F.
Taday
,
J. Phys. B
31
,
L553
(
1998
).
12.
T.
Zuo
,
S.
Chelkowski
, and
A. D.
Bandrauk
,
Phys. Rev. A
48
,
3837
(
1993
).
13.
T.
Zuo
and
A. D.
Bandrauk
,
Phys. Rev. A
52
,
R2511
(
1995
).
14.
S.
Chelkowski
,
A.
Conjusteau
,
T.
Zuo
, and
A. D.
Bandrauk
,
Phys. Rev. A
54
,
3235
(
1996
).
15.
A. D.
Bandrauk
and
J.
Ruel
,
Phys. Rev. A
59
,
2153
(
1999
).
16.
I.
Kawata
,
H.
Kono
,
Y.
Fujimura
, and
A. D.
Bandrauk
,
Phys. Rev. A
62
,
031401
(
2000
).
17.
I.
Kawata
,
H.
Kono
, and
A. D.
Bandrauk
,
Phys. Rev. A
64
,
043411
(
2001
).
18.
I.
Last
and
J.
Jortner
,
Phys. Rev. A
58
,
3826
(
1998
).
19.
C.
Cornaggia
and
Ph.
Herring
,
Phys. Rev. A
62
,
023403
(
2000
).
20.
C.
Cornaggia
,
Phys. Rev. A
52
,
R4328
(
1995
).
21.
Ph.
Hering
and
C.
Cornaggia
,
Phys. Rev. A
57
,
4572
(
1998
).
22.
C.
Cornaggia
,
M.
Schmidt
, and
D.
Normand
,
J. Phys. B
27
,
L123
(
1994
).
23.
C.
Cornaggia
,
F.
Solin
, and
C.
Leblanc
,
J. Phys. B
29
,
L749
(
1996
).
24.
V. R.
Bhardwaj
,
K.
Vijayalakshmi
, and
D.
Mathur
,
Phys. Rev. A
59
,
1392
(
1999
).
25.
D.
Mathur
,
Phys. Rev. A
63
,
0322502
(
2001
).
26.
V. R.
Bhardwaj
,
K.
Vijayalakshmi
, and
D.
Mathur
,
Phys. Rev. A
56
,
2455
(
1997
).
27.
S.
Banerjee
,
G.
Ravindra Kumar
, and
D.
Mathur
,
Phys. Rev. A
60
,
R3369
(
1999
).
28.
C. P.
Safvan
,
R. V.
Thomas
, and
D.
Mathur
,
Chem. Phys. Lett.
286
,
329
(
1998
).
29.
G. R.
Kumar
,
P.
Gross
,
C. P.
Safvan
,
F. A.
Rajgara
, and
D.
Mathur
,
J. Phys. B
29
,
L95
(
1996
).
30.
D.
Mathur
,
V. R.
Bhardwaj
,
P.
Gross
,
G. R.
Kumar
,
F. A.
Rajgara
,
C. P.
Safvan
, and
K.
Vijayalakshmi
,
Laser Phys.
7
,
829
(
1997
).
31.
C. P.
Safvan
,
V. R.
Bhardawaj
,
G. R.
Kumar
,
D.
Mathur
, and
F. A.
Rajgara
,
J. Phys. B
29
,
3135
(
1996
).
32.
G. R.
Kumar
,
P.
Gross
,
C. P.
Safvan
,
F. A.
Rajgara
, and
D.
Mathur
,
Phys. Rev. A
53
,
3098
(
1996
).
33.
L. J.
Frasinski
,
P. A.
Hatherly
,
K.
Codling
,
M.
Larsson
,
A.
Persson
, and
C.-G.
Wahlström
,
J. Phys. B
27
,
L109
(
1994
).
34.
L. J.
Frasinski
,
P. A.
Hatherly
, and
K.
Codling
,
Phys. Lett. A
156
,
227
(
1991
).
35.
M.
Castillejo
,
S.
Couris
,
E.
Koudoumas
, and
M.
Martin
,
Chem. Phys. Lett.
289
,
303
(
1998
).
36.
K. W.
Ledingham
,
P. R.
Singhal
,
D. J.
Smith
,
T.
McCanny
,
P.
Graham
,
H. S.
Kilic
,
W. X.
Peng
,
L. S.
Wang
,
A. J.
Langely
, and
P. F.
Taday
,
J. Phys. Chem. A
102
,
3002
(
1998
).
37.
D. J.
Smith
,
K. W. D.
Ledingham
,
H. S.
Kilic
,
T.
McCanny
,
W. X.
Peng
,
R. P.
Singhal
,
A. J.
Langley
,
P. F.
Taday
, and
C.
Kosmidis
,
J. Phys. Chem. A
102
,
2519
(
1998
).
38.
C.
Kosmidis
,
K. W.
Ledingham
,
H. S.
Kilic
,
T.
McCanny
,
R. P.
Singhal
,
A. J.
Langley
, and
W.
Shaikh
,
J. Phys. Chem. A
101
,
2264
(
1997
).
39.
P.
Tzallas
,
C.
Kosmidis
,
K. W. D.
Ledingham
,
R. P.
Singhal
,
T.
McCanny
,
P.
Graham
,
S. M.
Hankin
,
P. F.
Taday
, and
A. J.
Langley
,
J. Phys. Chem. A
105
,
529
(
2001
).
40.
K. W. D.
Ledingham
,
D. J.
Smith
,
R. P.
Singhal
,
T.
McCanny
,
P.
Graham
,
H. S.
Kilic
,
W. X.
Peng
,
A. J.
Langley
,
P. F.
Taday
, and
C.
Kosmidis
,
J. Phys. Chem. A
103
,
2952
(
1999
).
41.
K. W. D.
Ledingham
and
R. P.
Singhal
,
Int. J. Mass Spectrom. Ion Processes
163
,
149
(
1997
).
42.
A.
Zavriyev
,
P. H.
Bucksbaum
,
H. G.
Muller
, and
D. W.
Schumacher
,
Phys. Rev. A
42
,
5500
(
1990
).
43.
P.
Dietrich
and
P. B.
Corkum
,
J. Chem. Phys.
97
,
3187
(
1992
).
44.
X. P.
Tang
,
S. F.
Wang
,
M. E.
Elshakre
,
L. R.
Gao
, and
F. A.
Kong
,
J. Phys. Chem. A
107
,
13
(
2003
).
45.
S. F. Wang, L. R. Gao, M. E. Elshakre, X. P. Tang, and F. A. Kong, J. Phys. Chem. A (to be published).
46.
M. J. Frisch et al., GAUSSIAN (98), Revision A.7, Gaussian Inc., Pittsburgh, PA (1998).
This content is only available via PDF.
You do not currently have access to this content.