For prospective applications as molecular electric wires, triply linked fused porphyrin arrays have been prepared. As expected from their completely flat molecular structures, π-electron delocalization can be extended to the whole array manifested by a continuous redshift of the HOMO-LUMO transition band to infrared region up to a few μm as the number of porphyrin units in the array increases. To gain an insight into the relationship between the molecular structures and electronic properties, we have investigated resonance Raman spectra of fused porphyrin arrays depending on the number of porphyrin pigments in the array. We have carried out the normal mode analysis of fused porphyrin dimer based on the experimental results including Raman frequency shifts of two types of C13-isotope substituted dimers, Raman enhancement pattern by changing excitation wavelength, and depolarization ratio measurements as well as normal-mode calculations at the B3LYP/6-31G level. In order to find the origins for the resonance Raman mode enhancement mechanism, we have predicted both the excited state geometry changes (A-term) and the vibronic coupling efficiencies (B-term) for the relevant electronic transitions based on the INDO/S-SCI method. A detailed normal mode analysis of the fused dimer allows us to extend successfully our exploration to longer fused porphyrin arrays. Overall, our investigations have provided a firm basis in understanding the molecular vibrations of fused porphyrin arrays in relation to their unique flat molecular structures and rich electronic transitions.

1.
N.
Aratani
,
A.
Osuka
,
D.
Kim
,
Y. H.
Kim
, and
D. H.
Jeong
,
Angew. Chem.
39
,
1458
(
2000
).
2.
H. S.
Cho
,
N. W.
Song
,
Y. H.
Kim
,
S. C.
Jeoung
,
S.
Hahn
,
D.
Kim
,
S. K.
Kim
,
N.
Yoshida
, and
A.
Osuka
,
J. Phys. Chem. A
104
,
3287
(
2000
).
3.
C.-K.
Min
,
T.
Joo
,
M.-C.
Yoon
,
C. M.
Kim
,
Y. N.
Hwang
,
D.
Kim
,
N.
Aratani
,
N.
Yoshida
, and
A.
Osuka
,
J. Chem. Phys.
114
,
6750
(
2001
).
4.
Y. H.
Kim
,
D. H.
Jeong
,
D.
Kim
,
S. C.
Jeoung
,
H. S.
Cho
,
S. K.
Kim
,
N.
Aratani
, and
A.
Osuka
,
J. Am. Chem. Soc.
123
,
76
(
2001
).
5.
Y. H.
Kim
,
H. S.
Cho
,
D.
Kim
,
S. K.
Kim
,
N.
Yoshida
, and
A.
Osuka
,
Synth. Met.
117
,
183
(
2001
).
6.
D. H.
Jeong
,
M.-C.
Yoon
,
S. M.
Jang
,
D.
Kim
,
D. W.
Cho
,
N.
Yoshida
,
N.
Aratani
, and
A.
Osuka
,
J. Phys. Chem. A
106
,
2359
(
2002
).
7.
N.
Aratani
,
A.
Osuka
,
H. S.
Cho
, and
D.
Kim
,
J. Photochem. Photobiol. C: Photochemistry Reviews
3
,
25
(
2002
).
8.
R. E.
Martin
and
F.
Diederich
,
Angew. Chem., Int. Ed. Engl.
38
,
1351
(
1999
).
9.
E.
Clar
,
Ber. Dtsch. Chem. Ges. B
69
,
607
(
1936
).
10.
H.
Kuhn
,
J. Chem. Phys.
17
,
1198
(
1949
).
11.
A.
Tsuda
,
A.
Nakano
,
H.
Furuta
,
H.
Yamochi
, and
A.
Osuka
,
Angew. Chem., Int. Ed. Engl.
39
,
558
(
2000
).
12.
A.
Tsuda
,
H.
Furuta
, and
A.
Osuka
,
Angew. Chem., Int. Ed. Engl.
39
,
2549
(
2000
).
13.
A.
Tsuda
,
H.
Furuta
, and
A.
Osuka
,
J. Am. Chem. Soc.
123
,
10304
(
2001
).
14.
A.
Tsuda
and
A.
Osuka
,
Science
293
,
79
(
2001
).
15.
H. S.
Cho
,
D. H.
Jeong
,
S.
Cho
,
D.
Kim
,
Y.
Matsuzaki
,
K.
Tanaka
,
A.
Tsuda
, and
A.
Osuka
,
J. Am. Chem. Soc.
124
,
14642
(
2002
).
16.
V. S.-Y.
Lin
,
S. G.
DiMagno
, and
M. J.
Therien
,
Science
264
,
1105
(
1994
).
17.
D. P.
Arnold
and
L.
Nitschinsk
,
Tetrahedron
48
,
8781
(
1992
).
18.
R.
Kumble
,
S.
Palese
,
V. S.-Y.
Lin
,
M. J.
Therien
, and
R. M.
Hochstrasser
,
J. Am. Chem. Soc.
120
,
11489
(
1998
).
19.
M. G. H.
Vicente
,
L.
Jaquinod
, and
K. M.
Smith
,
Chem. Commun. (Cambridge)
1999
,
1771
.
20.
H. L.
Anderson
,
Chem. Commun. (Cambridge)
1999
,
2323
, and references therein.
21.
H. L.
Anderson
,
Inorg. Chem.
33
,
972
(
1994
).
22.
G. E.
O’Keefe
,
G. J.
Denton
,
E. J.
Harvey
,
R. T.
Phillips
, and
R. H.
Friend
,
J. Chem. Phys.
104
,
805
(
1996
).
23.
X.-Y.
Li
,
R. S.
Czernuszewicz
,
J. R.
Kincaid
,
Y. O.
Su
, and
T. G.
Spiro
,
J. Phys. Chem.
94
,
31
(
1990
).
24.
T. S.
Rush
III
,
P. M.
Kozlowski
,
C. A.
Piffat
,
R.
Kumble
,
M. Z.
Zgierski
, and
T. G.
Spiro
,
J. Phys. Chem. B
104
,
5020
(
2000
).
25.
X.-Y.
Li
,
R. S.
Czernuszewicz
,
J. R.
Kincaid
, and
T. G.
Spiro
,
J. Phys. Chem.
94
,
47
(
1990
).
26.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
27.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
28.
S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, New York, 1984).
29.
J. E.
Ridley
and
M. C.
Zerner
,
Theor. Chim. Acta
32
,
111
(
1973
).
30.
K.
Nishimoto
and
N.
Mataga
,
Z. Phys. Chem. (Munich)
12
,
335
(
1957
).
31.
S.
Mukamel
,
S.
Tretiak
,
T.
Wagersreiter
, and
V.
Chernyak
,
Science
277
,
781
(
1997
).
32.
S.
Asher
and
K.
Sauer
,
J. Chem. Phys.
64
,
4115
(
1976
).
33.
R.
Kumble
,
T. S.
Rush
III
,
M. E.
Blackwood
, Jr.
,
P. M.
Kozlowski
, and
T. G.
Spiro
,
J. Phys. Chem. B
102
,
7280
(
1998
).
34.
N.
Ohta
and
M.
Ito
,
Chem. Phys.
20
,
71
(
1977
).
35.
M.
Gouterman
,
J. Chem. Phys.
30
,
1139
(
1959
).
36.
Y.
Yamaguchi
,
J. Chem. Phys.
117
,
9688
(
2002
).
37.
N.
Yoshida
,
T.
Ishizuka
,
A.
Osuka
,
D. H.
Jeong
,
H. S.
Cho
,
D.
Kim
,
Y.
Matsuzaki
,
A.
Nogami
, and
K.
Tanaka
,
Chem.-Eur. J.
9
,
58
(
2003
).
38.
See EPAPS Document No. E-JCPSA6-119-003334 for calculated vibrational eigenvectors corresponding to (a) A1g and (b) B1g symmetries.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
39.
T.
Kitagawa
,
M.
Abe
, and
H.
Ogoshi
,
J. Chem. Phys.
69
,
4516
(
1978
).
40.
M.
Abe
,
T.
Kitagawa
, and
Y.
Kyogoku
,
J. Chem. Phys.
69
,
4526
(
1978
).
41.
G.
Zerbi
and
S.
Sandroni
,
Spectrochim. Acta, Part A
24
,
483
,
511
(
1968
).
42.
W. L.
Peticolas
,
D. P.
Strommen
, and
V.
Lakshminarayanan
,
J. Chem. Phys.
73
,
4185
(
1980
).
43.
M. Z.
Zgierski
and
M.
Pawlikowski
,
Chem. Phys.
65
,
335
(
1982
).
44.
A. C.
Albrecht
,
J. Chem. Phys.
34
,
1476
(
1961
);
B. B.
Johnson
and
W. L.
Peticolas
,
Annu. Rev. Phys. Chem.
27
,
465
(
1976
);
T. G.
Spiro
and
P.
Stein
,
Annu. Rev. Phys. Chem.
28
,
501
(
1977
);
D. L. Rousseau, J. M. Friedman, and P. F. Williams, Topics in Current Physics, edited by A. Weber (Springer, Berlin, 1979), Vol. 11, Chap. 6, p. 203;
W. Siebrand and M. Z. Zgierski, Excited States, edited by E. C. Lim (Academic, New York, 1979), Vol. 4, p. 1.
45.
S.
Sunder
,
R.
Mendelsohn
, and
H. J.
Bernstein
,
J. Chem. Phys.
63
,
573
(
1975
).
46.
D. W.
Collins
,
D. B.
Fitchen
, and
A.
Lewis
,
J. Chem. Phys.
59
,
5714
(
1973
).
47.
O. S.
Mortensen
,
Chem. Phys. Lett.
30
,
406
(
1975
).
48.
K. K.
Ong
,
J. O.
Jensen
, and
H. F.
Hameka
,
J. Mol. Struct.
459
,
131
(
1999
).
49.
D. H.
Jeong
,
S. M.
Jang
,
I.-W.
Hwang
,
D.
Kim
,
N.
Yoshida
, and
A.
Osuka
,
J. Phys. Chem. A
106
,
11054
(
2002
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.