We report on evaluation of the diagonal Born–Oppenheimer correction (DBOC) to the electronic energy with Hartree–Fock (HF) and conventional correlated wave functions for general molecular systems. Convergence of both HF and configuration interaction (CI) DBOC with the one-particle basis seems to be rather fast, with triple-ζ quality correlation consistent sets of Dunning et al. sufficiently complete to approach the respective basis set limits for the DBOC of the ground state of H2 within 0.1 cm−1. Introduction of electron correlation via the CI singles and doubles method has a substantial effect on the absolute value of the DBOC for H2,H2O, and BH in their ground states (ca. +13 cm−1 out of 115 cm−1, +22 cm−1 out of 622 cm−1, and +11 cm−1 out of 370 cm−1, respectively). The effect of the correlation correction to the DBOC on relative energies is small, e.g., the barrier to linearity of water changes by ca. 1 cm−1; however, the value is difficult to converge to the ab initio limit. Based on recent results by Schwenke [J. Phys. Chem. A 105, 2352 (2001)] and our findings, we expect the correlation correction to the DBOC to have a substantial effect on spectroscopic properties of the ground state of water. The effect of DBOC on equilibrium bond distance re and harmonic vibrational frequency ωe of the ground state of BH is +0.0007 Å and −2 cm−1, respectively. Surprisingly, the former is a much larger change than expected, and greater than errors due to residual incompleteness of electron correlation treatment and basis set in state-of-the-art conventional Born–Oppenheimer computations. The effect of using a correlated wave function for the DBOC evaluation on the above corrections to re and ωe is small.

1.
R. G.
Woolley
and
B. T.
Sutcliffe
,
Chem. Phys. Lett.
45
,
1977
(
1977
).
2.
W.
Kutzelnigg
,
Mol. Phys.
90
,
909
(
1997
).
3.
D. B.
Kinghorn
and
L.
Adamowicz
,
J. Chem. Phys.
106
,
4589
(
1997
).
4.
D. B.
Kinghorn
and
L.
Adamowicz
,
J. Chem. Phys.
113
,
4203
(
2000
).
5.
C. E.
Scheu
,
D. B.
Kinghorn
, and
L.
Adamowicz
,
J. Chem. Phys.
114
,
3393
(
2001
).
6.
W.
Cencek
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
266
,
383
(
1997
).
7.
W.
Cencek
,
J.
Rychlewski
,
R.
Jaquet
, and
W.
Kutzelnigg
,
J. Chem. Phys.
108
,
2831
(
1998
).
8.
J.
Komasa
,
W.
Cencek
, and
J.
Rychlewski
,
Chem. Phys. Lett.
304
,
293
(
1999
).
9.
N. C.
Handy
,
J.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
84
,
4481
(
1986
).
10.
A. G.
Ioannou
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
251
,
52
(
1996
).
11.
N. C.
Handy
and
A. M.
Lee
,
Chem. Phys. Lett.
252
,
425
(
1996
).
12.
H.
Sellers
and
P.
Pulay
,
Chem. Phys. Lett.
103
,
463
(
1984
).
13.
B. H.
Lengsfield
III
and
D. R.
Yarkony
,
J. Chem. Phys.
84
,
348
(
1986
).
14.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
15.
M.
Svrček
,
P.
Baňacký
,
S.
Biskupič
,
J.
Noga
,
P.
Pelikán
, and
A.
Zajac
,
Chem. Phys. Lett.
299
,
151
(
1999
).
16.
Another complication with using CC wave functions is that matrix elements with nontruncating expansions appear in finite-difference approximation to the adiabatic correction at the CC level. The complication can be dealt with by truncating the series to include terms up to a certain power of the displacement, e.g., O(δ3) to obtain diagonal correction in error by O(δ2), of the same order as the error from numerical differentiation.
17.
T. D. Crawford, C. D. Sherrill, E. F. Valeev et al., PSI 3.0, PSITECH, Inc., Watkinsville, GA 30677 (1999), http://vergil.chemistry.gatech.edu/psi/
18.
N. C.
Handy
,
Chem. Phys. Lett.
74
,
280
(
1980
).
19.
All computations were performed on individual nodes of the IBM SP of the Center for Computational Molecular Science and Technology at Georgia Tech. Visual Age C++5.0.2 compiler was used to compile all involved computer programs. This compiler generates combined floating-point multiply–add (FPMA) instructions which do not conform strictly to the IEEE standard. Our limited testing showed no noticeable effect of such deviance from the IEEE standard; thus, to reduce computational effect, FPMA instructions were allowed.
20.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
21.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
22.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1997
).
23.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
24.
2002 basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 7/29/02, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
25.
J. S. Coursey, D. J. Schwab, and R. A. Dragoset, Atomic weights and isotopic compositions [Online] (2002), version 2.3.1, Available: http://physics.nist.gov/Comp/ [August 29]. National Institute of Standards and Technology, Gaithersburg, MD.
26.
W.
Kołos
and
L.
Wolniewicz
,
J. Chem. Phys.
41
,
3663
(
1964
).
27.
L.
Wolniewicz
,
J. Chem. Phys.
99
,
1851
(
1993
).
28.
W.
Kołos
and
J.
Rychlewski
,
J. Chem. Phys.
98
,
3960
(
1993
).
29.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
30.
A.
Halkier
,
P.
Jørgensen
,
J.
Gauss
, and
T.
Helgaker
,
Chem. Phys. Lett.
274
,
235
(
1997
).
31.
R. D.
Bardo
and
M.
Wolfsberg
,
J. Chem. Phys.
68
,
2686
(
1978
).
32.
N. F.
Zobov
,
O. L.
Polyansky
,
C. R.
Le Sueur
, and
J.
Tennyson
,
Chem. Phys. Lett.
260
,
381
(
1996
).
33.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
,
V.
Szalay
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
110
,
11971
(
1999
).
34.
E. F.
Valeev
,
W. D.
Allen
,
H. F.
Schaefer
, and
A. G.
Császár
,
J. Chem. Phys.
114
,
2875
(
2001
).
35.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
9751
(
1998
).
36.
J. S.
Kain
,
O. L.
Polyansky
, and
J.
Tennyson
,
Chem. Phys. Lett.
317
,
365
(
2000
).
37.
O. L. Polyansky, A. G. Császár, S. V. Shirin, N. F. Zobov, P. Barletta, J. Tennyson, D. W. Schwenke, and P. J. Knowles, Science (in press).
38.
S. L.
Mielke
,
B. C.
Garrett
, and
K. A.
Peterson
,
J. Chem. Phys.
116
,
4142
(
2002
).
39.
J. M. L.
Martin
,
Chem. Phys. Lett.
283
,
283
(
1998
).
40.
The separation of increments to f into components is similar to that performed by Császár and Allen in their study of the effect of core correlation on spectroscopic constants (Ref. 42).
41.
W. T. M. L.
Fernando
and
P. F.
Bernath
,
J. Mol. Spectrosc.
145
,
392
(
1991
).
42.
A. G.
Császár
and
W. D.
Allen
,
J. Chem. Phys.
104
,
2746
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.