Atomization energies at 0 K and heats of formation at 298 K were obtained for a collection of small halogenated molecules from coupled cluster theory including noniterative, quasiperturbative triple excitations calculations with large basis sets (up through augmented septuple zeta quality in some cases). In order to achieve near chemical accuracy (±1 kcal/mol) in the thermodynamic properties, we adopted a composite theoretical approach which incorporated estimated complete basis set binding energies based on frozen core coupled cluster theory energies and (up to) five corrections: (1) a core/valence correction; (2) a Douglas–Kroll–Hess scalar relativistic correction; (3) a first-order atomic spin–orbit correction; (4) a second-order spin–orbit correction for heavy elements; and (5) an approximate correction to account for the remaining correlation energy. The last of these corrections is based on a recently proposed approximation to full configuration interaction via a continued fraction approximant for coupled cluster theory [CCSD(T)-cf]. Failure to consider corrections (1) to (4) can introduce errors significantly in excess of the target accuracy of ±1 kcal/mol. Although some cancellation of error may occur if one or more of these corrections is omitted, such a situation is by no means universal and cannot be relied upon for high accuracy. The accuracy of the Douglas–Kroll–Hess approach was calibrated against both new and previously published four-component Dirac Coulomb results at the coupled cluster level of theory. In addition, vibrational zero-point energies were computed at the coupled cluster level of theory for those polyatomic systems lacking an experimental anharmonic value.

1.
V. L.
Dvortsov
,
M. A.
Geller
,
S.
Solomon
,
S. M.
Schauffler
,
E. L.
Atlas
, and
D. R.
Blake
,
Geophys. Res. Lett.
26
,
1699
(
1999
).
2.
Y. G.
Lazarou
,
A. V.
Prosmitis
,
V. C.
Papadimitriou
, and
P.
Papagiannakopoulos
,
J. Phys. Chem. A
105
,
6729
(
2001
).
3.
Y. G.
Lazarou
,
V. C.
Papadimitriou
,
A. V.
Prosmitis
, and
P.
Papagiannakopoulos
,
J. Phys. Chem. A
106
,
11502
(
2002
).
4.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
5.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
6.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
7.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
46
,
6671
(
1992
).
8.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
9.
G. D.
Purvis
III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
10.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
11.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
12.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
13.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
14.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
15.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
).
16.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
103
,
6413
(
1999
).
17.
D.
Feller
,
J. Chem. Phys.
111
,
4373
(
1999
).
18.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
104
,
3048
(
2000
).
19.
D.
Feller
and
J. A.
Sordo
,
J. Chem. Phys.
113
,
485
(
2000
).
20.
D.
Feller
and
J. A.
Franz
,
J. Phys. Chem. A
104
,
9017
(
2000
).
21.
D.
Feller
and
D. A.
Dixon
,
J. Chem. Phys.
115
,
3484
(
2001
).
22.
D. A.
Dixon
and
D.
Feller
,
J. Phys. Chem. A
102
,
8209
(
1998
).
23.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
24.
B.
Ruscic
,
D.
Feller
,
D. A.
Dixon
,
K. A.
Peterson
,
L. B.
Harding
,
R. L.
Asher
, and
A. F.
Wagner
,
J. Phys. Chem. A
105
,
1
(
2001
).
25.
B.
Ruscic
,
A. F.
Wagner
,
L. B.
Harding
et al.,
J. Phys. Chem. A
106
,
2727
(
2002
).
26.
Y.
He
,
Z.
He
, and
D.
Cremer
,
Chem. Phys. Lett.
317
,
535
(
2000
).
27.
H.-J. Werner, P. J. Knowles, R. D. Amos et al. MOLPRO, Universität Stüttgart, Stüttgart, Germany, University of Birmingham, Birmingham, United Kingdom, 2000.
28.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
29.
D.
Feller
,
J. Comput. Chem.
17
,
1571
(
1996
).
30.
D. A.
Dixon
,
W. A.
deJong
,
K. A.
Peterson
, and
J. S.
Francisco
,
J. Phys. Chem. A
106
,
4725
(
2002
).
31.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
32.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
33.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA, 1998.
34.
T. Helgaker, H. J. A. Jensen, P. Jørgensen et al. DALTON 1.2 (2001).
35.
J. Anchell, E. Apra, D. Bernholdt et al. NWCHEM (1999).
36.
J. L.
Dunham
,
Phys. Rev.
41
,
713
(
1932
).
37.
C.
Hampel
,
K. A.
Peterson
, and
H. J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1990
).
38.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
39.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1988
).
40.
D.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
41.
T. H.
Dunning
, Jr.
,
K. A.
Peterson
, and
A. K.
Wilson
,
J. Chem. Phys.
114
,
9244
(
2001
).
42.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
110
,
7667
(
1999
).
43.
K. A. Peterson, D. Figgen, E. Goll, and H. Stoll (unpublished).
44.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
45.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
46.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Phys. Chem.
97
,
18
(
1993
).
47.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
48.
J. M. L.
Martin
,
Chem. Phys. Lett.
259
,
669
(
1996
).
49.
W.
Klopper
,
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Phys. B
32
,
R103
(
1999
).
50.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Nago
,
J. Chem. Phys.
106
,
9639
(
1997
).
51.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
52.
J. M. L.
Martin
,
J. Chem. Phys.
97
,
5012
(
1992
).
53.
J. M. L.
Martin
,
J. Chem. Phys.
100
,
8186
(
1994
).
54.
A. K.
Wilson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
106
,
8718
(
1997
).
55.
J. S.
Lee
and
S. Y.
Park
,
J. Chem. Phys.
112
,
10746
(
2000
).
56.
A. J. C.
Varandas
,
J. Chem. Phys.
113
,
8880
(
2000
).
57.
D. G.
Truhlar
,
Chem. Phys. Lett.
294
,
45
(
1998
).
58.
C. Schwartz, in Methods in Computational Physics, edited by B. J. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1963), Vol. 2, pp. 262.
59.
W.
Klopper
,
Mol. Phys.
99
,
481
(
2001
).
60.
S. J.
Chakravorty
and
E. R.
Davidson
,
Phys. Rev. A
47
,
3649
(
1993
).
61.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
62.
R. S.
Grev
,
C. L.
Janssen
, and
H. F.
Schaefer
, III
,
J. Chem. Phys.
95
,
5128
(
1991
).
63.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
117
,
10548
(
2002
).
64.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
65.
C. E. Moore, Atomic Energy Levels (Washington, D.C., 1949).
66.
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
104
,
2281
(
2000
).
67.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (Leipzig)
82
,
89
(
1974
).
68.
B. A.
Hess
,
Phys. Rev. A
32
,
756
(
1985
).
69.
B. A.
Hess
,
Phys. Rev. A
33
,
3742
(
1986
).
70.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
71.
B.
Metz
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
113
,
2563
(
2000
).
72.
G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950).
73.
M. W. Chase, Jr., NIST-JANAF Tables (4th Edition), J. Phys. Chem. Ref. Data Monogr. 9, Suppl. 1 (1998).
74.
K. Kuchitsu, Structure of Free Polyatomic Molecules—Basic Data (Springer, Berlin, 1998).
75.
R. J.
Cave
,
S. S.
Xantheas
, and
D.
Feller
,
Theor. Chim. Acta
83
,
31
(
1992
).
76.
D. Z.
Goodson
,
J. Chem. Phys.
116
,
6948
(
2002
).
77.
D.
Feller
and
J. A.
Sordo
,
J. Chem. Phys.
112
,
5604
(
2000
).
78.
D. Z.
Goodson
and
M.
Zheng
,
Chem. Phys. Lett.
365
,
396
(
2002
).
79.
L.
Visscher
and
K. G.
Dyall
,
J. Chem. Phys.
104
,
9040
(
1996
).
80.
L.
Visscher
,
J.
Styszynski
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
105
,
1987
(
1998
).
81.
W. A.
de Jong
,
J.
Styszynski
,
L.
Visscher
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
108
,
5177
(
1998
).
82.
L.
Visscher
,
O.
Visser
,
P. J. C.
Aerts
,
H.
Merenga
, and
W. C.
Nieuwpoort
,
Comput. Phys. Commun.
81
,
120
(
1994
).
83.
M.
Pernpointer
,
L.
Visscher
,
W. A.
deJong
, and
R.
Broer
,
J. Comput. Chem.
21
,
1176
(
2000
).
84.
K. G.
Dyall
and
K.
Faegri
, Jr.
,
Theor. Chim. Acta
94
,
39
(
1996
).
85.
V. P. Glushko, L. V. Gurvich, V. A. Bergman, I. V. Veits, V. A. Medvedev, G. A. Khachkunuzov, and V. S. Yungman, Teomodinamicheshki Svosita Individual’nikh Veschestv (Nauka, Moscow, 1978).
86.
K. C.
Ferguson
,
E. N.
Okafo
, and
E.
Whittle
,
J. Chem. Soc., Faraday Trans. 1
69
,
295
(
1973
).
87.
J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, London, 1970).
88.
W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling [Evaluation Number 12, Jet Propulsion Laboratory (JPL) Publication 97-4, JPL, California Institute of Technology, Pasadena, CA, 1997].
89.
P. L.
Fast
,
M. L.
Sánchez
, and
D. G.
Truhlar
,
J. Chem. Phys.
111
,
2921
(
1999
).
90.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
J. Phys. Chem. A
104
,
4581
(
2000
).
91.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
Chem. Phys. Lett.
315
,
449
(
1999
).
92.
D. A.
Dixon
,
J. Phys. Chem.
92
,
86
(
1988
).
93.
S. S.
Kumaran
,
M. C.
Su
,
K. P.
Lim
,
J. V.
Michael
,
A. F.
Wagner
,
L. B.
Harding
, and
D. A.
Dixon
,
J. Phys. Chem.
100
,
7541
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.